

A realistic Simulator in Search

and Rescue

by

Yuhan Zhu

Supervisor: Prof. Goldie Nejat

April 2022

B.A.Sc. Thesis

__

___________________________________ ___

___________________________________ ___

___________________________________ ___

___________________________________ ___

i

Abstract

To date, the robotics application in Urban Search and Rescue (USAR) has been a promising

research area. It provides a safe solution to assist rescue workers in reducing potential risk for

workers to enter unsafe structures and increasing the speed of response by increasing robot

quantities in rescue scenes. A high-leveled autonomous robot team requires efficient

collaboration, which requires reliable communication with their teammates, and centralized

control center. However, in USAR scenarios, communications are frequently interrupted. Thus, a

multi-agent Deep Reinforcement learning model was recently presented to handle poor

communication issues in an unknown cluttered environment. To test the performance of the DRL

model, integration with the real-world is required. While extracting large datasets from physical

robots is expensive and unsafe, a real-world simulator was designed to accelerate the training

process. Therefore, in my thesis project, a 3D realistic simulator in search and rescue is proposed

for future deep learning research. The 3D simulator was tested on sixty trials with three different

initial positions, five robot team sizes, and four environment sizes. The results demonstrate that

the robot fleet could improve exploration efficiency with the increment of robots, which met the

expectation. The 3D realistic simulator has excellent potential for further improvement to mimic

real search and rescue scenes.

ii

Acknowledgements
Throughout the writing of this thesis project, I have received a great deal of support and

assistance.

I would first like to thank my supervisor, Professor Goldie Nejat, whose expertise was invaluable

in formulating the research questions and methodology. Your insightful feedback pushed me to

sharpen my thinking and brought my work to a higher level.

I gratefully recognize the help of Ph.D. student Aaron Tan whose valuable guidance throughout

my studies and detailed feedback was influential in shaping my experiment methods and results.

My appreciation also goes out to my family and friends for their encouragement and support

throughout my studies.

iii

Table of Contents

Abstract .. i

Acknowledgements ... ii

List of Figures ... v

List of Tables ... vi

1. Background ... 1

2. Objectives ... 1

2.1 Simulation Configuration.. 2

2.2 Robot Simulation .. 2

2.2.1 Path Planning ... 2

2.2.2 SLAM .. 2

2.2.3 Robot Communication ... 2

3. Literature Review.. 3

3.1 SLAM Algorithms .. 3

3.1.1 Visual-Based SLAM .. 3

3.1.2 Lidar-Based SLAM .. 5

3.1.3 Limitations and Selection .. 6

3.2 Path Planning Algorithms ... 7

3.2.1 Global Path Planner ... 7

3.2.2 Local Path Planner ... 10

3.3 Map Merging Algorithms ... 13

4. Methods... 14

4.1 Environment Simulation ... 14

4.1.1 Exploration Boundary .. 14

4.1.2 Obstacles .. 15

4.2 Multi-Robot Simulation .. 16

4.2.2 RTAB-Map SLAM .. 16

4.2.3 Navigation .. 19

4.3.3 Map Merge ... 21

4.3.3 Integration with MADE-Net .. 23

5. Experiments and Results ... 24

5.1 Experiments .. 24

iv

5.1.1 Computer Specification ... 24

5.1.2 Robot Setup .. 24

5.1.3 Validation Environment Setup ... 25

5.1.4 Experiment Procedure .. 26

5.2 Results and Discussion ... 27

6. Conclusion and Future Work .. 28

Reference: ... 30

v

List of Figures
Figure 1: RRT exploration process [74] ... 9

Figure 2: Example of forward prediction of DWA local planner [75] ... 11

Figure 3: Scenario 1: Traces of robot and human’s movement [78] .. 12

Figure 4: Scenario 2: Traces of robot and human’s movement [78] .. 12

Figure 5: a) Bird-eye view of the simulated environment, b) closer view of the environment 14

Figure 6: 20x20 exploration boundary built with Gazebo Building Editor 15

Figure 7: Garbage bin, bookshelf, and dumpster obstacle model ... 15

Figure 8: a) 3D view of Jackal with ZED2 camera and VLP-16 lidar[13], b) simulated 3D view

of Jackal with ZED2 camera and VLP-16 lidar .. 16

Figure 9: Left and right raw image obtained from stereo camera. .. 17

Figure 10: An 3D point cloud generated from stereo images ... 18

Figure 11: An occupancy grid generated by RTAB-Map ... 19

Figure 12: Navigation stack setup required for move_base node [87] ... 20

Figure 13: Global Path (green) and Local Path (orange) .. 20

Figure 14: a) Two robots’ local maps before map exchange b) robots’ local maps after map

exchange ... 21

Figure 15: Misalignment of map using existing m_explore package ... 21

Figure 16: Map merging demo ... 22

Figure 17: Partial rqt_graph of the system focusing on map merge ... 23

Figure 18: Example waypoints used in navigation ... 23

Figure 19: Simulated environments for validation process .. 25

Figure 20: Three different initial position for robot team ... 26

Figure 21: The total exploration time for each environment size and robot size combinations ... 27

vi

List of Tables

Table 1: A summary of all SLAM methods and their limitations .. 7

Table 2: A summary of global path planning algorithms and their limitations 10

Table 3: The computer specifications in experiment simulations .. 24

Table 4: The total exploration time for each environment size and robot size combinations 28

Table 5: The exploration time for each starting position in 30x30 environment 28

1

1. Background

The application of robots in Urban Search and Rescue (USAR) has gained significant attention in

recent years. Due to their replaceability, repairability, and upgradable feature, a large number of

collaborative robots are dispatched in a coordinated manner to explore unknown cluttered scenes

and search for victims [1]. The methodologies can be categorized as centralized or decentralized

in multi-robot system (MRS), each with its advantages and drawbacks. The centralized systems

can optimize the performance with a global knowledge of the system, but they suffer from single

point failure of the server [2]. The decentralized system requires strong understanding of the

environment to pre-design strategies for exploration [3], but depends on information exchange

locally with neighboring robots [4]. However, in USAR missions, communication with a

centralized computer is often unreliable, and local communication with teammates is limited by

both robots’ transmission range and environment (e.g., obstacles) [5]. As a result, both traditional

methodologies are hard to achieve satisfactory performance with respect to mission time, energy

consumption, etc. To address these performance degradations, robots should learn to predict

other robots’ behaviors [6]. A multi-agent DRL method known as MADE-Net (Macro Action

Decentralized Exploration Network) was recently presented to handle the poor communication

issue in the unknown cluttered environment [7]. It learns the teammates’ intentions during

centralized training and executes exploration tasks in decentralized manner.

To further validate the performance of MADE-Net in addressing the communication dropout

challenges, integrating the architecture into real-world environments with physical robots is

needed. However, DRL methods require considerable training data, and extracting training

samples directly from physical robots is time-consuming and unsafe [8]. A real-world simulator

for multi-robot exploration will accelerate the learning process. Previous works have been done

to construct USAR customizable environments with Gazebo 3D simulator and perform frontier

exploration in the environment [9] using Clearpath Husky robot with a stereo camera and a

thermal camera. However, there is no simulator for interfacing the USAR 3D simulator with

deep learning frameworks to support multi-thread training [10].

2. Objectives

This project aims to build a 3D simulator to support deep reinforcement learning in USAR

scenarios. The following requirements should be met.

2

2.1 Simulation Configuration

To further evaluate the performance of deep learning model regarding the environment

exploration, the simulator should be flexible in terms of spatial configurations (e.g., obstacle

densities, terrain steepness, etc.), robot configuration, robot team size (from 1 to 6), and the

environment size (20m x 20m, 30m x 30m, 40m x 40m, etc.) based on the multi-thread training

requirements.

2.2 Robot Simulation

The USAR 3D simulator should be capable of including any robot configuration in simulations

by editing the URDF file and control parameters. As for this particular application of the

simulator, given that the physical robots used for real-world testing are Clearpath Jackal robots

with ZED2 stereo camera [11] and Velodyne lidar [12], the USAR 3D simulator will need to be

modified to accommodate the specified Jackal configurations [13].

2.2.1 Path Planning

The simulated robots should be capable of performing their navigation tasks (i.e., navigation

between arbitrary initial and goal locations) based on the tasks allocated by the deep learning

model (MADE-Net DRL model in this application) in a decentralized manner. Herein, a task is

defined as an exploration goal, which is spatially distributed within the unknown environment.

Each robot is assigned a unique task to navigate simultaneously.

2.2.2 SLAM

The simulated robots should be equipped with SLAM (Simultaneous Localization and Mapping)

to construct maps of the unknown environment and track robots’ localization while navigating

[14]. The generated map will be taken as high-level observations by the proposed DRL model.

2.2.3 Robot Communication

The simulated robots explore the environment in a decentralized manner. Thus, no centralized

communication is needed; but the robots should be capable of exchanging information and

performing map merging operations within a predefined sensing range.

3

3. Literature Review

Due to the existence of previous work on USAR environment simulator [9], the 3D simulator

platform will not be reviewed in this section. The main components reviewed in detail is SLAM

[15] [16] [17] [18] [19] [20] [21] [22] [23], path planning [24] [25] [26] [27] [28] [29] [30] and

map merging [31] [32] [33].

3.1 SLAM Algorithms

Since urban search and rescue environments are significantly cluttered and unstructured [1], the

simultaneous localization and mapping (SLAM) algorithms should be capable of acquiring a 3D

map of a USAR environment and tracking robots’ location [34]. 2D SLAM methods such as

Gmapping [35], HectorSLAM [36] are not suitable in this scenario because they are limited by

their ability to retrieve 3D information and construct 3D map. Currently, the sensors deployed in

the SLAM system are mainly Light-Detection, Ranging (LiDAR), and cameras [15]. The SLAM

methods reviewed are categorized by the type of sensors deployed in the SLAM system [16].

The popular SLAM methods reviewed are visual-based SLAM [17] and Lidar-Based SLAM

[15].

3.1.1 Visual-Based SLAM

Visual-based SLAM uses different types of visual sensors, including monocular [37], stereo [38],

and depth (RGB-D) cameras [39], to capture images of the environment [15]. These images are

used to extract features and depth information to estimate robot’s motion and position and

generate 2D or 3D maps [17]. Considering existing hardware installed in physical Jackal robots,

SLAM methods that can use stereo camera as input source. In this section, papers introducing

visual-based SLAM methods are discussed in detail, including ORB-SLAM2 [18], S-PTAM

[20], and RTAB-Map [21].

The method proposed in [18] introduces a feature-based SLAM method, ORB-SLAM2. It can

utilize monocular, stereo, and RGB-D cameras for image extraction. The system preprocesses

input to extract ORB features [40] at the salient point for tracking, mapping, and place

recognition, which achieves good performance regardless of camera autogain and autoexposure,

4

and illumination changes. More importantly, these features are fast to track and match, allowing

real-time operation with good precision. The system is embedded with a place recognition

module based on DBoW2 [41] for relocalization and performs motion-only BA (Bundle

Adjustment) to compute the optimal structure and motion solution. ORB-SLAM2 was tested on

KITTI [42], EuRoC [43] datasets for stereo method, and TUM RGB-D [44] dataset for RGB-D

method and achieves the highest accuracy in most cases compared to stereo method LSD-SLAM

[45], and ElasticFusion [46], Kintinuous [47], DVO-SLAM [48] and RGB-D SLAM [49].

S-PTAM[20] is a real-time keyframe-based SLAM method with stereo camera. The features

extracted from images are binary features describing visual point-landmarks to reduce the

storage requirements and the matching cost. Real-time loop detection and correction are included

in the system. The generated map is refined with bundle adjustment in a local co-visible area to

improve global consistency. S-PTAM was compared with ORB-SLAM2 and S-LSD-SLAM on

the KITTI dataset [42] and it presented the least amount of rotation error among these three

methods. It was tested on Level 7 s-block dataset [50] with ORB-SLAM2, showing comparable

accuracy and similar error peaks.

RTAB-Map (Real-Time Appearance-Based Mapping) [21] was proposed for long-term and

large-scale environment mapping. It utilizes Stereo, RGB-D, and multi-camera as input and

extracts GFTT (GoodFeaturesToTrack) [51] features for matching. The features detected are

matched by nearest neighbor search with nearest neighbor distance ratio (NNDR) test [52] for

F2M (Frame-To-Map). For F2F (Frame-To-Frame) approach, the optical flow is done directly on

GFTT features without descriptor extraction. The system is able to provide visual odometry

using Frame-To-Map (F2M) and Frame-To-Frame (F2F) approaches and estimate the robot’s

position by computing transformation of the current frame to feature in keyframe or feature map

with Perspective-n-Point (PnP) RANSAC [53]. A block matching algorithm [54] is applied to

compute dense disparity images and convert them to point clouds for stereo images. A loop

closure detection is introduced using the bag-of-words approach [55] for optimization. The

performance of RTAB-Map was evaluated on KITTI [42], EuRoC [43], TUM RGB-D [44], and

PR2 MIT Stata Center [56] dataset. Compared to ORB-SLAM2 [18] and LSD-SLAM [45]

methods, RTAB-Map has 0.09% larger translation error and 0.0001 deg/m better rotation

5

performance on the KITTI dataset. For EuRoC and TUM datasets, ORB-SLAM2 performs better

than RTAB-Map, but it is more computationally expensive.

3.1.2 Lidar-Based SLAM

LiDAR-Based SLAM system obtains accurate point clouds of the environment [15] using a laser

sensor and generate the map. In this section, three different LiDAR-based SLAM methods are

reviewed: RTAP-Map [21], Google Cartographer [22], and SegMatch [23].

RTAB-Map also includes lidar as input source [21]. The pose estimation is updated when ICP

(iterative-closest-point) [57] is successfully done using Point to Point (P2P) or Point to Plane

(P2N) correspondence. The pose estimation requires valid motion prediction from a previous

registration or from external odometry transformation. The pose and map optimization are done

the same way as visual SLAM. The evaluation was done with the same datasets as mentioned

above in RTAB-Map visual SLAM approach in comparison to Google Cartographer [22], Karto

SLAM [58], Hector SLAM [36] and GMapping [35]. For short-range lidar, RTAB-Map is the

best for both sequences during evaluation. For long-range lidar, RTAB-Map performs equally

well to Hector SLAM.

Google Cartographer involves two processes, called local SLAM and global SLAM [59]. During

local SLAM, new scans are matched against the current submap with a Ceres-based scan

matcher. The submap is expressed as a probability grid where each discrete grid point shows the

obstacle occupancy. In global SLAM, generated submaps and scans are included for loop closing

and errors accumulated in submaps are removed. The algorithm was evaluated based on Radish

[60] dataset benchmarking and tested in the real-world [61]. Compared with Graph Mapping,

Google Cartographer performs better on 5 out of 7 datasets. And in real-world experiments, the

error results are roughly in the expected order of magnitude compared to ground truth.

In [23], a real-time laser-based 3D SLAM method, SegMatch, was introduced. The point clouds

obtained from 3D LiDAR are first segmented into unique point clusters for matching using the

“Cluster-All Method” [62]. Next, feature extraction is performed based on eigenvalue and

ensemble of shape histograms. A random forest for classification and timing performances was

deployed, the correspondences are then matched. RANSAC (random sample consensus) [63]

6

algorithm is applied to verify the potential matches. The proposed algorithm was tested using the

KITTI dataset [64] and can successfully localize its vehicle within 35 meters 95% of the time.

3.1.3 Limitations and Selection

A summary of limitations for all SLAM methods mentioned above is presented in Table 1. For

visual-based SLAM, the localization and mapping are performed by matching features extracted

from images [19]. While requiring unobstructed cameras and adequate features for matching, the

images' quality suffers from illumination and visibility changes in real life. However, cameras

are cheaper, have lower power consumption and they can provide more detailed environmental

information than other sensors, such as lidar and Radar [65].

For LiDAR-based SLAM, the localization and mapping are achieved by matching point cloud

data [23]. The information extraction is limited to geometry information, ignoring semantic

information. LiDAR can provide high-precision distance measurements but is not able to provide

as finely detailed point clouds as images in terms of density. The performance of LiDAR-based

SLAM is not affected by illumination changes compared with visual-based SLAM. In places

with few obstacles, the algorithm suffers from aligning the point clouds, resulting in losing track

of the pose prediction [15].

All methods mentioned in previous sections have packages implemented in ROS (Robot

Operating System) except for SegMatch [23]. Considering all aspects, RTAB-Map is selected for

simulation because it supports both visual-based and LiDAR-based SLAM, allowing changing

sensors based on specific needs. Bothe methods in RTAB-Map are capable of generating 2D

occupancy grids, which is suitable for most path planners [66].

Method Name Summary Description Limitation

ORB-SLAM2

[18]

• Feature-based SLAM method

• Utilizes monocular, stereo, and RGB-D

cameras

• ORB features are fast to track and match,

allowing real-time operation with good

precision

Trajectory estimation

not as accurate as

RTAB-Map [67]

7

S-PTAM [20]

• Real-time keyframe-based SLAM method

with stereo camera

• Binary features describing visual point-

landmarks

Support only stereo

camera

RTAB-Map [21]

• Support both visual-based and lidar-based

SLAM

• Features detected by F2M (Frame-To-Map)

and F2F (Frame-To-Frame) approach

• Provide visual odometry

Images' quality suffers

from illumination and

visibility changes

Google

Cartographer

[22]

• Local SLAM and global SLAM

• Local SLAM generates submaps expressed

in probability grids with new scans

• Global SLAM includes submaps and scans

for loop closure and error removal

Information extraction

is limited to geometry

information

SegMatch [23]

• “Cluster-All Method” segments point

clouds into unique point clusters

• RANSAC is used for verifying the potential

matches

No integration with

ROS

Table 1: A summary of all SLAM methods and their limitations

3.2 Path Planning Algorithms

Path planning is a crucial task in autonomous robotics. It involves defining a path from the initial

position to the goal position avoiding obstacles in the environment [68]. In this section, papers

pertaining to path planning are reviewed. These papers are categorized as global path planners

[69] and local path planners [70].

3.2.1 Global Path Planner

Global path planners reviewed in this section are categorized as grid-based approaches [25],

evolutionary approach [71], and probability-based approaches [66].

3.2.1.1 Grid-Based Algorithm

Grid-based path planning utilizes 2D occupancy grid. The optimal path is calculated based on the

property of each grid cell.

8

A* algorithm [72] finds the shortest path from initial node qinit to goal node qgoal. It employs a

function f(q) = g(q) +h(q), where g(q) estimates the cost of the shortest path from initial node qinit

to q, and h(q) estimates the cost of the shortest path from q to qgoal. The costs are calculated based

on either Euclidian distance or Manhattan distance. The experimental result shows that the best

result in path length corresponds to A* algorithm, but the processing time is more than 30%

higher compared to probabilistic Roadmap and genetic algorithms [68].

D* algorithm [25] is a modified dynamic version of the A* algorithm, where cost functions are

updated once new obstacles are detected. A complete map is not required to compute the cost

function. Instead of using g(q) to represent the cost from current node q to goal node qgoal, it

calculates the cost backward from the destination cell. Recomputations are required every time

obstacles are detected. It suits the dynamic and unknown environment. In the 8x8 grid test, D*

algorithm has 0.003 second longer execution time than A* algorithm.

3.2.1.2 Evolutionary Algorithm

Genetic Algorithm is a stochastic search technique that mimics the natural evolution process

inspired by Darwin [71]. Potential solutions to a problem are encoded as chromosomes, which

form a population [73]. In path planning, chromosomes are used to represent the grid cells of the

mobile robot environment. GA generates a population of possible paths iteratively, and the

population is evaluated by the predefined fitness function. The crossover strategy prevents the

solution from converging to local minima. GA was tested in 10x10 and 100x100 grid world and

it was able to find the shortest path in different environment setups within 100 generations [74].

3.2.1.3 Probabilistic-based Algorithm

Rapidly-Exploring Random Tree (RRT) [27] is a probabilistic-based algorithm, solving path

planning without nonholonomic constraints. The tree incrementally grows from the starting point

qinit to a random number of new nodes qnew until it hits the endgoal qgoal. And two different

functions, creation and expansion of the tree, are used. The expansion of the tree is one way from

starting point to end point whereas the expansion of the tress is bidirectional to improve the time

efficiency. RRT algorithm performs better in execution time compared to RRT*, but worse than

9

A* and HPA* algorithms. In addition, the path length computed by RRT is the longest among all

algorithms, including A*, HPA*, MEA*, etc [74].

Figure 1: RRT exploration process [74]

3.2.1.4 Limitation and Selection

A summary of all SLAM methods discussed, and their limitations are shown in Table 2. The

computation cost of grid-based algorithm and RRT algorithm increases considerably for large

scale and high-dimensional environment because of the usage of grid map [74]. Parameter

tunning is one disadvantage of evolutionary algorithms in addition to huge computation cost

increment. RRT requires a large number of iterations and samples to avoid local minima, which

increases the need for memory [71]. However, robots are not equipped with high-power

computers with enough computer memory, which limits the potential of using the RRT

algorithm.

Considering difficulties in parameter tuning and computation power optimization, the

evolutionary approach is not considered an appropriate approach in the USAR scenario. Since

the chosen SLAM method RTAB-Map can generate a 2D occupancy grid for both visual-based

and LiDAR-based approaches, the grid-based methods are chosen. In addition, A* algorithm

exists in ROS as one of the main global planners. Thus, the A* algorithm is chosen for future

simulation development.

10

Method Summary Limitations

A* algorithm [72]
• Grid-based path planning

• Cost function f(q) = g(q) +h(q)

The processing time is more

than 30% higher compared to

the probabilistic Roadmap

and genetic algorithms.

D* algorithm [25]

• Modified dynamic version of the

A* algorithm

• Cost functions are updated once

new obstacles are detected

Computation cost increase

greatly for large scale and

high-dimensional

environment.

Genetic

Algorithm [73]

• Generates a population of possible

paths

• Population is evaluated by the

predefined fitness function

Parameter tunning is hard

Rapidly-

Exploring

Random Tree

(RRT) [66]

• Probabilistic-based algorithm

• Tree incrementally grows from the

starting point until it hits the end-

goal

Requires a large number of

iterations and samples to

avoid local minima,

increasing memory usage.

Table 2: A summary of global path planning algorithms and their limitations

3.2.2 Local Path Planner

In this section, local path planners available in ROS are reviewed, including Dynamic Window

Approach (DWA) local planner [28], Time Elastic Band (TEB) local planner[29] and EBAND

local planner [30].

3.2.2.1 Dynamic Window Approach (DWA) local planner

The DWA local planner deals with the local path planning problem in the 2D occupancy grid

[28]. The DWA planner discretely proposes linear velocity (dx, dy) and angular velocity (dƟ).

For each velocity sample, forward simulation from the current robot’s position is performed to

11

predict the position of the robot after the proposed velocity is applied for some short period of

time (Figure 2). The results from forwarding simulation are evaluated and unsuccessful

trajectories are forbidden. The best trajectory is chosen, and the corresponding velocity is sent to

a mobile base. The algorithm is tested in 2D corridor with static obstacles. The experiments

showed that the DWA planner is very robust and successfully handled collision avoidance tasks,

with a safe maximum driving speed up to 95 cm/s, while the computation time is within 0.25 sec.

Figure 2: Example of forward prediction of DWA local planner [75]

3.2.2.2 Time Elastic Band (TEB) local planner

TEB local planner is introduced in [75]. It accounts for the velocity and acceleration constraints

as well as surrounding obstacle distance, with a weight assigned to each. It generates a sequence

of poses for discrete time intervals. Similar to the DWA planner, the linear and angular velocity

will be fed into a mobile base controller for navigation. The results from simulations and

experiments illustrates that the approach is robust and provides a smooth path [76]. In addition,

TEB local planner takes into consideration of geometric constraints. In recent version of

teb_local_planner, it supports dynamic obstacles. However, the performance depends on the

obstacle tracking and state estimation accuracy. As shown in figure 3, the TEB local planner

collides as its preferred trajectory is elongated by the motion of human.

12

Figure 3: Scenario 1: Traces of robot and human’s movement [78]

3.2.2.3 EBAND local planner

EBAND local planner [30] produces a collision-free path by two artificial forces: contraction

force, and repulsion force. The contraction force helps plan a smooth path, while the repulsion

force keeps the robot away from obstacles. The global trajectory is modified such that the robot

can smoothly follow the path. Results showed that the EBAND planner was less smooth

compared to DWA and TEB planner and experiences similar test results as TEB planner in terms

of execution time. This algorithm was implemented in ROS as eband_local_panner package [77].

3.2.2.4 Limitations and Selection

DWA local planner does not consider the robot’s geometric constraints, which means the robot

will not keep a safe distance away from obstacles. This may cause collisions [78]. For EBAND

and TEB local planner, the direction of dynamic obstacles’ movement may make the path

planning worse. In scenario 2 (Figure 4) when a human ignoring the approaching robot, the

initial optimal trajectory passes between the wall and the human becomes infeasible. The

updated trajectory will be elongated to avoid the human, and eventually cause collision with the

wall [30].

Figure 4: Scenario 2: Traces of robot and human’s movement [78]

13

Due to the requirement of multiple robots to work collaboratively in the same environment, we

need to consider the effect of one robot crossing the other’s planned path. Thus, DWA planner

was chosen regardless of the geometric constraints of the robots. In addition, DWA planner is the

default local planner implemented in Jackal.

3.3 Map Merging Algorithms

To construct a complete global map of the environment, the data collected by different robots

need to be integrated into a single map. Moreover, the integration should be done as fast as

possible to facilitate the environment exploration process [31]. If the initial position of robots is

known, map merging is a straightforward extension of the single robot mapping [32], [33]. This

is because the transformation between local maps is known; map merging is a simple addition

operation. However, the integration of maps when robots do not know their relative position is

more complicated. With few correspondences in local maps, feature extraction will fail, and

transformation between different local maps can be erroneous.

The method proposed in [33] allows keeping multiple disconnected maps in memory. The map

merging is done by computing a transformation between two overlapping regions by scan

matching. One of the maps is then transformed such that two overlapping areas fit. A loop

closing operation is applied to refit the two maps to improve the accuracy of merging. The

algorithm was tested with RoboCup Rescue Virtual Robots Competition maps [79] and the

Cogniron dataset [80].

The approach in [31] describes an adapted particle filter in combination with a predictive model

of the environment in addition to estimation of overlaps. The most likely hypothesis is

determined at each iteration of the particle filter. The algorithm was tested with a sequence of

data collected in three environments. The experiment showed that the map-merging algorithm

generated accurate, consistent maps in all 12 runs and actively verified the relative location of

robots.

In our environment exploration experiment, the initial positions of the robots are known. Thus,

straight forward map merging algorithm is more than enough to handle this scenario. In ROS,

map_merge node was implemented in m_explore package and selected for future simulations.

14

4. Methods

This section will describe the final simulator design in detail, which is divided into four

components: Environment Simulation, Multi-Robot Simulation, Map Merging, Integration with

MADE-Net

4.1 Environment Simulation

The simulator should be flexible enough to provide customized cluttered and unstructured

environment by using various types of obstacles and placing them randomly in the scene, Figure

5. The environment configurations are saved in .world files, where the size of the workspace,

type of obstacles, and their placement can be customized through gazebo environment

configuration.

(a) (b)

Figure 5: a) Bird-eye view of the simulated environment, b) closer view of the environment

4.1.1 Exploration Boundary

The boundary of the environment used is wall models built with gazebo building editor. The

exploration environment is located from −
𝑒𝑛𝑣_𝑠𝑖𝑧𝑒

2
 to

𝑒𝑛𝑣_𝑠𝑖𝑧𝑒

2
 for both x and y axes. The wall

texture was modified to red brick for SLAM to extract features more easily.

15

Figure 6: 20x20 exploration boundary built with Gazebo Building Editor

4.1.2 Obstacles

Gazebo provides various obstacle models in the online library, such as construction cones,

garbage bins, dumpsters, bookshelves, etc., Figure 7.

Figure 7: Garbage bin, bookshelf, and dumpster obstacle model

16

4.2 Multi-Robot Simulation

As mentioned above, the robot in simulation is designed with one ZED2 camera and one VLD-

16 lidar in Figure 8 to allow the application of both visual and LiDAR SLAM methods.

(a) (b)

Figure 8: a) 3D view of Jackal with ZED2 camera and VLP-16 lidar[13], b) simulated 3D view

of Jackal with ZED2 camera and VLP-16 lidar

Jackal is integrated with high torque 4x4 drivetrain for rugged all-terrain operations [13]. It has

an onboard computer, GPS, and IMU, which is suitable for research in all terrains. It is already

integrated with ROS as ros-melodic-jackal-simulator package [81].

Jackal robots can be spawned in any world in Gazebo by spawn_node in modified

spawn_jackal.launch file in jackal_gazebo package to account for spawning multiple robots. By

default, a robot_state_publisher node is initialized for each robot to calculate the robot’s forward

kinematics and publishes transformation through tf.

The robot configuration, including customized sensors, will be discussed in Experiment section.

4.2.2 RTAB-Map SLAM

RTAB-Map was selected for robot localization and mapping. Visual SLAM mode was used

because it can collect more information than lidar SLAM mode. A ZED2 camera ROS plugin is

not available at the moment; therefore, a customized stereo-camera plugin was used.

libgazebo_ros_multicamera.so was installed and added to the Jackal robot URDF (Unified Robot

Description Format) file [82] to simulate the stereo camera. It will create two camera topics

(from the left and right cameras), and the output image is shown in Figure 9.

17

Figure 9: Left and right raw image obtained from stereo camera.

To simplify the matching problem, the raw images are passed through stereo_image_proc node

to perform rectification [83] which warps the images taken by stereo camera such that they

appear equivalent to images taken with only horizontal displacement, and de-mosaicing which

reconstructs a full-color image [84]. A 3D point cloud map is then created by matching features

extracted from these images, shown in Figure 10

a) Point cloud extracted from stereo images

18

b) Actual environment

Figure 10: An 3D point cloud generated from stereo images

A 2D occupancy grid (shown in Figure 11) is created by projecting the 3D point clouds on the

ground plane (e.g., x-y plane). The black pixels are space occupied by obstacles. And the red

modules represent Jackal robots.

a) Occupancy grid generated from point cloud data in Figure 10

19

b) Actual environment bird eye view

Figure 11: An occupancy grid generated by RTAB-Map

4.2.3 Navigation

After constructing the 2D occupancy map and localizing themselves on the map, the robots can

then navigate to arbitrary locations. The move_base package is implemented to achieve global

navigation in the simulated environment [85]. This package is commonly used for robot

navigation, and it is integrated with Jackal official package, which can be directly used. Some

modifications should be made to consider different namespaces for each robot. With the chosen

global planner (A*) and local planner (DWA), robots can complete navigation goals assigned by

the proposed DRL model (MADE-Net in this application) [7]. Figure 12 shows the

recommended navigation stack by ROS. In general, the robot should subscribe to sensor readings

and occupancy maps to construct global and local costmaps, which will be used by global and

local planners to generate a feasible path. Velocity commands are calculated and sent by

local_planner to move the robot.

20

Figure 12: Navigation stack setup required for move_base node [87]

The move_base package utilizes 2D occupancy map to calculate a global trajectory and local

trajectory when a navigation goal is set, Figure 13. The green line and orange line are the global

and local trajectories that one robot should follow, respectively.

Figure 13: Global Path (green) and Local Path (orange)

21

4.3.3 Map Merge

In this USAR simulator, the communication focuses on the map exchange when two robots

satisfy the conditions of map exchange: 1) two of the robots are within a predefined

communication range, and 2) there is no obstacles or walls in their line of sight.

Now that each robot generates its 2D occupancy map with its own RTAB-Map node, a map

merging node is introduced such that they can exchange their map information and develop a

merged map. The map exchange process of two robots is shown in Figure 14.

Figure 14: a) Two robots’ local maps before map exchange b) robots’ local maps after map

exchange

The previous map merging algorithm used was map_merge node implemented in m_explore

package [86]. However, this node introduced some additional errors in map processing, which

resulted in misalignment between the local map and the merged map, in Figure 15.

Figure 15: Misalignment of map using existing m_explore package

22

Therefore, a customized python script was built that deals with occupancy grid directly utilizing

NumPy array [87]. The customized script subscribes to local map topics generated by SLAM

algorithm and greedily combines the 2D occupancy grids. For faster computation speed, each

occupancy grid is converted from tuple to NumPy array. The algorithm works for an arbitrary

number of robots. A demonstration of the map merging process with two robots is shown in

Figure 16.

a) 2d occupancy map – jackal1 b) 2d occupancy map – jackal2

c) Merged map

Figure 16: Map merging demo

23

The map merging part of the algorithm rqt_graph is shown in Figure 17. The “base_map_server”

nodes are initially publishing empty maps, making “jackal1/map_merge” and

“jackal2/map_merge” nodes only to publish their local 2D occupancy map generated by rtabmap

SLAM. Topics “jackal1/map” and “jackal2/map” are subscribed by “map_merge” node [88],

which publishes the global “map”. The merged map of two robots is running in the background

at the beginning. Once two robots meet the communication criteria, the global map will be saved

by “map_saver” node and the “base_map_server”s will start to publish the saved map [88].

Figure 17: Partial rqt_graph of the system focusing on map merge

4.3.3 Integration with MADE-Net

The integration with MADE-Net is accomplished by jackal_waypoint.launch launch file, which

takes in desired goal location, orientation and wait time after reaching the goal for each robot and

publishes command to move_base_simple/goal for move_base node to execute. An example of a

set of waypoints is shown in Figure 18.

Figure 18: Example waypoints used in navigation

24

5. Experiments and Results

5.1 Experiments

To test the scalability of the simulator and integration with deep reinforcement model, the

following experiment setups are proposed.

5.1.1 Computer Specification

The computer specifications are shown in the table below. In total, two computers are used

during the experiments.

 Computer 1 Computer 2

CPU Intel i7 11800H 8-core AMD Ryzen threadripper 1950x 16-core

processor x32

RAM 16GB 110GB

GPU NVDIA GeForce 3060 NVDIA GeForce 2070

Table 3: The computer specifications in experiment simulations

5.1.2 Robot Setup

The jackal robot is modified to be equipped with VLD-16 Lidar and ZED2 stereo Camera, by

importing the velodyne_gazebo_plugins and stereo_camera_plugin. The Velodyne lidar is

located (x = 0.120m, y = 0m, z = 0.05m) with respect to the robot’s origin. The stereo camera is

located at the (x = 0.25m, y = 0m, z = 0.132m) with respect to the robot’s origin.

The robots used in the experiment were equipped with RTAB-Map SLAM for constructing maps

and localization. A* algorithm and DWA local planner were used for global and local path

planning.

Each robot has a communication range of 5 meters, within which the robots can exchange their

information, including local maps, robot positions, etc.

25

5.1.3 Validation Environment Setup

The current environments generated for simulation are 20m x 20m, 30m x 30m, 40m x 40m, and

60m x 60m, which various densities and randomly placed obstacles, in Figure 19. The spacing

between diagonally placed obstacles was larger than the robot size, to allow robot to go through.

The environment setup can be expanded to any arbitrary size according to different training

needs.

 a) 60 x 60 m2 b) 40 x 40 m2

 c) 30 x 30 m2 d) 20 x 20 m2

Figure 19: Simulated environments for validation process

26

5.1.4 Experiment Procedure

Once the robots and environment are set up properly in Gazebo, the next step is to run the

navigation tasks assigned by MADE-Net. The robots were spawned at three different robot team

starting positions, bottom left corner, top right corner, and a randomly selected position from the

middle of the map, shown in Figure 20. In bottom left corner and top right corner trials, the

robots localized further from the corner started navigation first, whereas in the third trials, the

robots started navigation at the same time. Each trial was repeated in four different environment

sizes with five different robot team sizes.

a) Top right corner initial position b) Middle initial position

c) Bottom left corner initial position

Figure 20: Three different initial position for robot team

27

The test was terminated when 95% of the environment was globally explored by the team. For

each experiment, the total exploration time was recorded based on the simulation time shown in

gazebo.

5.2 Results and Discussion

The total exploration time with different team sizes and environment sizes is averaged across 3

cases with different team starting positions, shown in Figure 21, Table 4. In general, the

exploration time experienced a decreasing trend with the increment of robot team size. However,

there was barely any improvement in total exploration time in 20x20, 30x30, and 40x40

environments with 6 robots. Contrariwise, the teams significantly improved exploration time,

even with 6 robots in a 60x60 environment. This is due to more space for robots to navigate

without interference with other robots.

Figure 21: The total exploration time for each environment size and robot size combinations

28

Exploration

Time (s)

Robot Team Size

2 Robots 3 Robots 4 Robots 5 Robots 6 Robots

Environment

Size

20x20 294 241.666667 195.33333 159.66667 161.333333

30x30 643 470.6666667 400.666667 300.666667 299

40x40 1198.66667 774 617.66667 579.33333 565

60x60 2854 2016.666667 1777 1709 1319

Table 4: The total exploration time for each environment size and robot size combinations

The widespread distribution of robots improved exploration efficiency when more robots were

added to the scene. However, dispatching more robots into the scene also results in more time for

each robot to navigate between waypoints and avoid collisions with teammates. Especially at the

beginning of exploration, when robots were gathered in one corner, the time for each robot to

navigate significantly increased as the team size increased. This can be validated by the shorter

exploration time in the case where robots started in the middle of the environment and spread out

to distinct orientations, shown in Table 5.

Exploration

Time (s)
2 robots 3 robots 4 robots 5 robots 6 robots

BL 720 407 473 327 360

TR 667 530 342 286 313

MID 445 445 377 277 265

Table 5: The exploration time for each starting position in 30x30 environment

6. Conclusion and Future Work

In conclusion, the 3D realistic simulator design can simulate environment exploration with

multi-robots for deep reinforcement training. A 3D unstructured world that resembles the 2D

grid world for training can be customized in Gazebo simulator. An arbitrary number of robots

with different initial positions can be included in the world to perform navigation tasks assigned

by MADE-Net and generate macro-observations maps required using RTAB-Map SLAM

algorithm. In addition, the communications between robots are represented by simulating map

merging processes. A merged map can be produced when two robots meet.

29

The design was tested with 60 trials with four different environment sizes, five robot team sizes,

and three different initial positions. In 95% of the trials, the environments were explored

completely. The simulated results met the expectation that the exploration time improves with

the increment of team size [7].

However, there are some limitations in this design that can be improved in the future. The

current simulation only supports visual-based SLAM. Thus, it is impossible to extract

observations at the back of the robot, which is one of the reasons why the environments were not

explored completely. If LiDAR-based SLAM is introduced into the simulator, it will allow users

to get 360 degree observations, resulting in more flexibility in customizing robot exploration

configurations. Also, a more robust and fast map merging algorithm with the ability to clear

moving obstacles can be designed to make corrections to the merged map. In addition, rough

terrain and unstructured obstacles can be included in the simulation environment to further

validate the performance reinforcement learning in more realistic urban search and rescue

scenes.

30

Reference:

[1] Y. Liu and G. Nejat, “Robotic Urban Search and Rescue: A Survey from the Control

Perspective,” J. Intell. Robot. Syst., vol. 72, no. 2, pp. 147–165, Nov. 2013, doi:

10.1007/s10846-013-9822-x.

[2] S. Saravanan, K. C. Ramanathan, R. MM, and M. N. Janardhanan, “Review on state-of-the-

art dynamic task allocation strategies for multiple-robot systems,” Ind. Robot, Sep. 2020,

doi: 10.1108/IR-04-2020-0073.

[3] M. Geng, K. Xu, X. Zhou, B. Ding, H. Wang, and L. Zhang, “Learning to Cooperate via an

Attention-Based Communication Neural Network in Decentralized Multi-Robot

Exploration,” Entropy, vol. 21, p. 294, Mar. 2019, doi: 10.3390/e21030294.

[4] M. Geng, X. Zhou, B. Ding, H. Wang, and L. Zhang, “Learning to Cooperate in

Decentralized Multi-robot Exploration of Dynamic Environments: 25th International

Conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018, Proceedings,

Part VII,” 2018, pp. 40–51. doi: 10.1007/978-3-030-04239-4_4.

[5] F. Amigoni, J. Banfi, and N. Basilico, “Multirobot Exploration of Communication-Restricted

Environments: A Survey,” IEEE Intell. Syst., vol. 32, pp. 48–57, Nov. 2017, doi:

10.1109/MIS.2017.4531226.

[6] A. Bautin, O. Simonin, and F. Charpillet, “Towards a communication free coordination for

multi-robot exploration,” May 2012.

[7] A. H. Tan, F. P. Bejarano, and G. Nejat, “Deep Reinforcement Learning for Decentralized

Multi-Robot Exploration with Macro Actions,” ArXiv211002181 Cs, Oct. 2021, Accessed:

Jan. 23, 2022. [Online]. Available: http://arxiv.org/abs/2110.02181

[8] N. Liu, Y. Cai, T. Lu, R. Wang, and S. Wang, “Real–Sim–Real Transfer for Real-World

Robot Control Policy Learning with Deep Reinforcement Learning,” Appl. Sci., vol. 10, p.

1555, Feb. 2020, doi: 10.3390/app10051555.

[9] “Aronlin4458/USAR,” GitHub. https://github.com/Aronlin4458/USAR (accessed Jan. 23,

2022).

[10] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USARSim: a robot

simulator for research and education,” in Proceedings 2007 IEEE International Conference

on Robotics and Automation, Apr. 2007, pp. 1400–1405. doi:

10.1109/ROBOT.2007.363180.

31

[11] “ZED 2 - AI Stereo Camera.” https://www.stereolabs.com/zed-2/ (accessed Jan. 27,

2022).

[12] “Puck Lidar Sensor, High-Value Surround Lidar,” Velodyne Lidar.

https://velodynelidar.com/products/puck/ (accessed Jan. 27, 2022).

[13] “Jackal UGV - Small Weatherproof Robot - Clearpath,” Clearpath Robotics.

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/ (accessed Jan. 27,

2022).

[14] S. J. Julier and J. K. Uhlmann, “Building a million beacon map,” in Sensor Fusion and

Decentralized Control in Robotic Systems IV, Oct. 2001, vol. 4571, pp. 10–21. doi:

10.1117/12.444158.

[15] J. Yang, “A Survey of SLAM Research based on LiDAR Sensors,” vol. 1, no. 1, p. 8,

2019.

[16] H. Taheri and Z. C. Xia, “SLAM; definition and evolution,” Eng. Appl. Artif. Intell., vol.

97, no. Complete, 2021, doi: 10.1016/j.engappai.2020.104032.

[17] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms: a survey from 2010

to 2016,” IPSJ Trans. Comput. Vis. Appl., vol. 9, no. 1, p. 16, Jun. 2017, doi:

10.1186/s41074-017-0027-2.

[18] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for

Monocular, Stereo, and RGB-D Cameras,” IEEE Trans. Robot., vol. 33, no. 5, pp. 1255–

1262, Oct. 2017, doi: 10.1109/TRO.2017.2705103.

[19] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An Overview to Visual Odometry

and Visual SLAM: Applications to Mobile Robotics,” Intell. Ind. Syst., vol. 1, no. 4, pp.

289–311, 2015, doi: 10.1007/s40903-015-0032-7.

[20] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. Jacobo Berlles, “S-

PTAM: Stereo Parallel Tracking and Mapping,” Robot. Auton. Syst., vol. 93, no. Complete,

pp. 27–42, 2017, doi: 10.1016/j.robot.2017.03.019.

[21] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual simultaneous

localization and mapping library for large-scale and long-term online operation: LABBÉ

AND MICHAUD,” J. Field Robot., vol. 36, no. 2, pp. 416–446, Mar. 2019, doi:

10.1002/rob.21831.

32

[22] A. Nuchter, M. Bleier, J. Schauer, and P. Janotta, “IMPROVING GOOGLE’S

CARTOGRAPHER 3D MAPPING BY CONTINUOUS-TIME SLAM,” ISPRS - Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-2/W3, pp. 543–549, Feb. 2017, doi:

10.5194/isprs-archives-XLII-2-W3-543-2017.

[23] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “SegMatch:

Segment based loop-closure for 3D point clouds,” 2017 IEEE Int. Conf. Robot. Autom.

ICRA, pp. 5266–5272, May 2017, doi: 10.1109/ICRA.2017.7989618.

[24] A. K. Guruji, H. Agarwal, and D. K. Parsediya, “Time-efficient A* Algorithm for Robot

Path Planning,” Procedia Technol., vol. 23, pp. 144–149, 2016, doi:

10.1016/j.protcy.2016.03.010.

[25] C. Saranya, K. K. Rao, M. Unnikrishnan, Dr. V. Brinda, V. R. Lalithambika, and M. V.

Dhekane, “Real Time Evaluation of Grid Based Path Planning Algorithms: A comparative

study,” IFAC Proc. Vol., vol. 47, no. 1, pp. 766–772, Jan. 2014, doi: 10.3182/20140313-3-

IN-3024.00050.

[26] S. Choueiry, M. Owayjan, H. Diab, and R. Achkar, “Mobile Robot Path Planning Using

Genetic Algorithm in a Static Environment,” in 2019 Fourth International Conference on

Advances in Computational Tools for Engineering Applications (ACTEA), Jul. 2019, pp. 1–6.

doi: 10.1109/ACTEA.2019.8851100.

[27] S. Lavalle and J. Kuffner, “Rapidly-Exploring Random Trees: Progress and Prospects,”

Algorithmic Comput. Robot. New Dir., Jan. 2000.

[28] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33, Mar. 1997, doi:

10.1109/100.580977.

[29] Z. Yongzhe, B. Ma, and C. K. Wai, “A Practical Study of Time-Elastic-Band Planning

Method for Driverless Vehicle for Auto-parking,” in 2018 International Conference on

Intelligent Autonomous Systems (ICoIAS), Mar. 2018, pp. 196–200. doi:

10.1109/ICoIAS.2018.8494025.

[30] B. Cybulski, A. Wegierska, and G. Granosik, “Accuracy comparison of navigation local

planners on ROS-based mobile robot,” in 2019 12th International Workshop on Robot

Motion and Control (RoMoCo), Jul. 2019, pp. 104–111. doi:

10.1109/RoMoCo.2019.8787346.

33

[31] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart, “Distributed

Multirobot Exploration and Mapping,” Proc. IEEE, vol. 94, no. 7, pp. 1325–1339, Jul. 2006,

doi: 10.1109/JPROC.2006.876927.

[32] K. Konolige et al., “Centibots: Very Large Scale Distributed Robotic Teams,” in

Experimental Robotics IX, Berlin, Heidelberg, 2006, pp. 131–140. doi:

10.1007/11552246_13.

[33] M. Pfingsthorn, B. Slamet, and A. Visser, “A Scalable Hybrid Multi-robot SLAM

Method for Highly Detailed Maps,” in RoboCup 2007: Robot Soccer World Cup XI, Berlin,

Heidelberg, 2008, pp. 457–464. doi: 10.1007/978-3-540-68847-1_48.

[34] S. Thrun et al., “A system for volumetric robotic mapping of abandoned mines,” in 2003

IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Sep.

2003, vol. 3, pp. 4270–4275 vol.3. doi: 10.1109/ROBOT.2003.1242260.

[35] C. Marshal Revanth, D. Saravanakumar, R. Jegadeeshwaran, and G. Sakthivel,

“Simultaneous Localization and Mapping of Mobile Robot using GMapping Algorithm,” in

2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS),

Dec. 2020, pp. 56–60. doi: 10.1109/iSES50453.2020.00024.

[36] S. Saat, W. Rashid, M. Tumari, and M. Saealal, “HECTORSLAM 2D MAPPING FOR

SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM),” J. Phys. Conf. Ser., vol.

1529, p. 042032, Apr. 2020, doi: 10.1088/1742-6596/1529/4/042032.

[37] M. A. Haseeb, J. Guan, D. Ristić-Durrant, and A. Gräser, “DisNet: A novel method for

distance estimation from monocular camera,” p. 6.

[38] A. O’ Riordan, T. Newe, D. Toal, and G. Dooly, Stereo Vision Sensing: Review of

existing systems. 2018. doi: 10.1109/ICSensT.2018.8603605.

[39] C. Jing, J. Potgieter, F. Noble, and R. Wang, “A comparison and analysis of RGB-D

cameras’ depth performance for robotics application,” in 2017 24th International Conference

on Mechatronics and Machine Vision in Practice (M2VIP), Nov. 2017, pp. 1–6. doi:

10.1109/M2VIP.2017.8211432.

[40] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to

SIFT or SURF,” in 2011 International Conference on Computer Vision, Nov. 2011, pp.

2564–2571. doi: 10.1109/ICCV.2011.6126544.

34

[41] D. Galvez-López and J. D. Tardos, “Bags of Binary Words for Fast Place Recognition in

Image Sequences,” IEEE Trans. Robot., vol. 28, no. 5, pp. 1188–1197, Oct. 2012, doi:

10.1109/TRO.2012.2197158.

[42] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI

dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237, Sep. 2013, doi:

10.1177/0278364913491297.

[43] “The EuRoC micro aerial vehicle datasets - Michael Burri, Janosch Nikolic, Pascal Gohl,

Thomas Schneider, Joern Rehder, Sammy Omari, Markus W Achtelik, Roland Siegwart,

2016.” https://journals-sagepub-

com.myaccess.library.utoronto.ca/doi/10.1177/0278364915620033 (accessed Jan. 24, 2022).

[44] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the

evaluation of RGB-D SLAM systems,” in 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Oct. 2012, pp. 573–580. doi: 10.1109/IROS.2012.6385773.

[45] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct SLAM with stereo cameras,” in

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep.

2015, pp. 1935–1942. doi: 10.1109/IROS.2015.7353631.

[46] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S. Leutenegger,

“ElasticFusion: Real-time dense SLAM and light source estimation,” Int. J. Robot. Res., vol.

35, no. 14, pp. 1697–1716, 2016, doi: 10.1177/0278364916669237.

[47] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald, “Real-

time large-scale dense RGB-D SLAM with volumetric fusion,” Int. J. Robot. Res., vol. 34,

no. 4–5, pp. 598–626, 2015, doi: 10.1177/0278364914551008.

[48] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov. 2013, pp.

2100–2106. doi: 10.1109/IROS.2013.6696650.

[49] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-D Mapping With an RGB-

D Camera,” IEEE Trans. Robot., vol. 30, no. 1, pp. 177–187, Feb. 2014, doi:

10.1109/TRO.2013.2279412.

[50] T. Morris and T. Morris, “Stereo images, laser data and wheel odometry: for testing and

evaluation of stereo visual odometry and visual SLAM algorithms,” Research Data

35

Australia. https://researchdata.edu.au/stereo-images-laser-slam-algorithms/453751 (accessed

Jan. 27, 2022).

[51] J. Shi and Tomasi, “Good features to track,” in 1994 Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, Jun. 1994, pp. 593–600. doi:

10.1109/CVPR.1994.323794.

[52] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J.

Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004, doi:

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.

[53] G. R. Bradski and A. Kaehler, Learning OpenCV: computer vision with the OpenCV

library, 1. ed., [Nachdr.]. Beijing: O’Reilly, 2011.

[54] K. Konolige, “Small Vision Systems: Hardware and Implementation,” in Robotics

Research, Y. Shirai and S. Hirose, Eds. London: Springer London, 1998, pp. 203–212. doi:

10.1007/978-1-4471-1580-9_19.

[55] M. Labbé and F. Michaud, “Appearance-Based Loop Closure Detection for Online

Large-Scale and Long-Term Operation,” IEEE Trans. Robot., vol. 29, no. 3, pp. 734–745,

Jun. 2013, doi: 10.1109/TRO.2013.2242375.

[56] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The MIT Stata Center dataset,”

Int. J. Robot. Res., vol. 32, no. 14, pp. 1695–1699, Dec. 2013, doi:

10.1177/0278364913509035.

[57] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256, Feb. 1992, doi: 10.1109/34.121791.

[58] R. Vincent, B. Limketkai, and M. Eriksen, “Comparison of indoor robot localization

techniques in the absence of GPS,” Orlando, Florida, Apr. 2010, p. 76641Z. doi:

10.1117/12.849593.

[59] “Ceres Solver — A Large Scale Non-linear Optimization Library.” http://ceres-

solver.org/ (accessed Jan. 24, 2022).

[60] R. Kümmerle et al., “On measuring the accuracy of SLAM algorithms,” Auton. Robots,

vol. 27, no. 4, pp. 387–407, 2009, doi: 10.1007/s10514-009-9155-6.

[61] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2D LIDAR

SLAM,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), May

2016, pp. 1271–1278. doi: 10.1109/ICRA.2016.7487258.

36

[62] B. Douillard et al., “On the segmentation of 3D LIDAR point clouds,” in 2011 IEEE

International Conference on Robotics and Automation, May 2011, pp. 2798–2805. doi:

10.1109/ICRA.2011.5979818.

[63] “Random sample consensus: a paradigm for model fitting with applications to image

analysis and automated cartography: Communications of the ACM: Vol 24, No 6.” https://dl-

acm-org.myaccess.library.utoronto.ca/doi/abs/10.1145/358669.358692 (accessed Jan. 24,

2022).

[64] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI

vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern

Recognition, Providence, RI, Jun. 2012, pp. 3354–3361. doi: 10.1109/CVPR.2012.6248074.

[65] B. Gao, H. Lang, and J. Ren, “Stereo Visual SLAM for Autonomous Vehicles: A

Review,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

Oct. 2020, pp. 1316–1322. doi: 10.1109/SMC42975.2020.9283161.

[66] I. Noreen, A. Khan, H. Ryu, N. L. Doh, and Z. Habib, “Optimal path planning in

cluttered environment using RRT*-AB,” Intell. Serv. Robot., vol. 11, no. 1, pp. 41–52, Jan.

2018, doi: 10.1007/s11370-017-0236-7.

[67] N. Ragot, R. Khemmar, A. Pokala, R. Rossi, and J.-Y. Ertaud, “Benchmark of Visual

SLAM Algorithms: ORB-SLAM2 vs RTAB-Map,” Colchester, United Kingdom, Jul. 2019.

doi: 10.1109/EST.2019.8806213.

[68] B. Hernández and E. Giraldo, “A Review of Path Planning and Control for Autonomous

Robots,” in 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA),

Nov. 2018, pp. 1–6. doi: 10.1109/CCRA.2018.8588152.

[69] M. Korkmaz and A. Durdu, “Comparison of optimal path planning algorithms,” in 2018

14th International Conference on Advanced Trends in Radioelecrtronics,

Telecommunications and Computer Engineering (TCSET), Feb. 2018, pp. 255–258. doi:

10.1109/TCSET.2018.8336197.

[70] B. P. Gerkey and K. Konolige, “Planning and control in unstructured terrain,” 2008.

[71] G. Nagib and W. Gharieb, Path planning for a mobile robot using genetic algorithms.

2004, p. 189. doi: 10.1109/ICEEC.2004.1374415.

37

[72] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths,” IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, pp.

100–107, Jul. 1968, doi: 10.1109/TSSC.1968.300136.

[73] Y. Hu and S. X. Yang, “A knowledge based genetic algorithm for path planning of a

mobile robot,” in IEEE International Conference on Robotics and Automation, 2004.

Proceedings. ICRA ’04. 2004, Apr. 2004, vol. 5, pp. 4350-4355 Vol.5. doi:

10.1109/ROBOT.2004.1302402.

[74] I. Noreen, A. Khan, K. Asghar, and Z. Habib, “A Path-Planning Performance

Comparison of RRT*-AB with MEA* in a 2-Dimensional Environment,” Symmetry, vol. 11,

p. 945, Jul. 2019, doi: 10.3390/sym11070945.

[75] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram, “Trajectory

modification considering dynamic constraints of autonomous robots,” in ROBOTIK 2012;

7th German Conference on Robotics, May 2012, pp. 1–6.

[76] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Efficient trajectory

optimization using a sparse model,” in 2013 European Conference on Mobile Robots, Sep.

2013, pp. 138–143. doi: 10.1109/ECMR.2013.6698833.

[77] “eband_local_planner - ROS Wiki.” http://wiki.ros.org/eband_local_planner (accessed

Jan. 28, 2022).

[78] J. J. Johnson, L. Li, F. Liu, A. H. Qureshi, and M. C. Yip, “Dynamically Constrained

Motion Planning Networks for Non-Holonomic Robots,” ArXiv200805112 Cs Eess, Aug.

2020, Accessed: Jan. 24, 2022. [Online]. Available: http://arxiv.org/abs/2008.05112

[79] “A Realistic RoboCup Rescue Simulation Based on Gazebo,” springerprofessional.de.

https://www.springerprofessional.de/en/a-realistic-robocup-rescue-simulation-based-on-

gazebo/7383196 (accessed Jan. 24, 2022).

[80] Z. Zivkovic, O. Booij, B. Krose, E. A. Topp, and H. Christensen, “From Sensors to

Human Spatial Concepts: An Annotated Data Set,” IEEE Trans. Robot., vol. 24, pp. 501–

505, May 2008, doi: 10.1109/TRO.2008.918046.

[81] “Jackal,” GitHub. https://github.com/jackal (accessed Apr. 13, 2022).

[82] “urdf - ROS Wiki.” http://wiki.ros.org/urdf (accessed Jan. 30, 2022).

[83] D. Oram, “Rectification for any epipolar geometry,” 2001. doi: 10.5244/C.15.67.

38

[84] A. Davies and P. Fennessy, “Chapter 6 - Digital image processing,” in Digital Imaging

for Photographers (Fourth Edition), A. Davies and P. Fennessy, Eds. Oxford: Focal Press,

2001, pp. 93–141. doi: 10.1016/B978-0-240-51590-8.50007-X.

[85] “move_base - ROS Wiki.” http://wiki.ros.org/move_base (accessed Jan. 24, 2022).

[86] “explore_lite - ROS Wiki.” http://wiki.ros.org/explore_lite (accessed Apr. 13, 2022).

[87] “NumPy.” https://numpy.org/ (accessed Apr. 13, 2022).

[88] “map_server - ROS Wiki.” http://wiki.ros.org/map_server (accessed Jan. 24, 2022).

39

