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Abstract 

To date, the robotics application in Urban Search and Rescue (USAR) has been a promising 

research area. It provides a safe solution to assist rescue workers in reducing potential risk for 

workers to enter unsafe structures and increasing the speed of response by increasing robot 

quantities in rescue scenes. A high-leveled autonomous robot team requires efficient 

collaboration, which requires reliable communication with their teammates, and centralized 

control center. However, in USAR scenarios, communications are frequently interrupted. Thus, a 

multi-agent Deep Reinforcement learning model was recently presented to handle poor 

communication issues in an unknown cluttered environment. To test the performance of the DRL 

model, integration with the real-world is required. While extracting large datasets from physical 

robots is expensive and unsafe, a real-world simulator was designed to accelerate the training 

process. Therefore, in my thesis project, a 3D realistic simulator in search and rescue is proposed 

for future deep learning research. The 3D simulator was tested on sixty trials with three different 

initial positions, five robot team sizes, and four environment sizes. The results demonstrate that 

the robot fleet could improve exploration efficiency with the increment of robots, which met the 

expectation. The 3D realistic simulator has excellent potential for further improvement to mimic 

real search and rescue scenes.  
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1. Background 

The application of robots in Urban Search and Rescue (USAR) has gained significant attention in 

recent years. Due to their replaceability, repairability, and upgradable feature, a large number of 

collaborative robots are dispatched in a coordinated manner to explore unknown cluttered scenes 

and search for victims [1]. The methodologies can be categorized as centralized or decentralized 

in multi-robot system (MRS), each with its advantages and drawbacks. The centralized systems 

can optimize the performance with a global knowledge of the system, but they suffer from single 

point failure of the server [2]. The decentralized system requires strong understanding of the 

environment to pre-design strategies for exploration [3], but depends on information exchange 

locally with neighboring robots [4]. However, in USAR missions, communication with a 

centralized computer is often unreliable, and local communication with teammates is limited by 

both robots’ transmission range and environment (e.g., obstacles) [5]. As a result, both traditional 

methodologies are hard to achieve satisfactory performance with respect to mission time, energy 

consumption, etc. To address these performance degradations, robots should learn to predict 

other robots’ behaviors [6]. A multi-agent DRL method known as MADE-Net (Macro Action 

Decentralized Exploration Network) was recently presented to handle the poor communication 

issue in the unknown cluttered environment [7]. It learns the teammates’ intentions during 

centralized training and executes exploration tasks in decentralized manner. 

To further validate the performance of MADE-Net in addressing the communication dropout 

challenges, integrating the architecture into real-world environments with physical robots is 

needed. However, DRL methods require considerable training data, and extracting training 

samples directly from physical robots is time-consuming and unsafe [8]. A real-world simulator 

for multi-robot exploration will accelerate the learning process. Previous works have been done 

to construct USAR customizable environments with Gazebo 3D simulator and perform frontier 

exploration in the environment [9] using Clearpath Husky robot with a stereo camera and a 

thermal camera. However, there is no simulator for interfacing the USAR 3D simulator with 

deep learning frameworks to support multi-thread training [10].  

2. Objectives 

This project aims to build a 3D simulator to support deep reinforcement learning in USAR 

scenarios. The following requirements should be met.  
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2.1 Simulation Configuration 

To further evaluate the performance of deep learning model regarding the environment 

exploration, the simulator should be flexible in terms of spatial configurations (e.g., obstacle 

densities, terrain steepness, etc.), robot configuration, robot team size (from 1 to 6), and the 

environment size (20m x 20m, 30m x 30m, 40m x 40m, etc.) based on the multi-thread training 

requirements. 

2.2 Robot Simulation 

The USAR 3D simulator should be capable of including any robot configuration in simulations 

by editing the URDF file and control parameters. As for this particular application of the 

simulator, given that the physical robots used for real-world testing are Clearpath Jackal robots 

with ZED2 stereo camera [11] and Velodyne lidar [12], the USAR 3D simulator will need to be 

modified to accommodate the specified Jackal configurations [13]. 

2.2.1 Path Planning 

The simulated robots should be capable of performing their navigation tasks (i.e., navigation 

between arbitrary initial and goal locations) based on the tasks allocated by the deep learning 

model (MADE-Net DRL model in this application) in a decentralized manner. Herein, a task is 

defined as an exploration goal, which is spatially distributed within the unknown environment. 

Each robot is assigned a unique task to navigate simultaneously.  

2.2.2 SLAM 

The simulated robots should be equipped with SLAM (Simultaneous Localization and Mapping) 

to construct maps of the unknown environment and track robots’ localization while navigating 

[14]. The generated map will be taken as high-level observations by the proposed DRL model. 

2.2.3 Robot Communication 

The simulated robots explore the environment in a decentralized manner. Thus, no centralized 

communication is needed; but the robots should be capable of exchanging information and 

performing map merging operations within a predefined sensing range.   
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3. Literature Review 

Due to the existence of previous work on USAR environment simulator [9], the 3D simulator 

platform will not be reviewed in this section. The main components reviewed in detail is SLAM 

[15] [16] [17] [18] [19] [20] [21] [22] [23], path planning [24] [25] [26] [27] [28] [29] [30] and 

map merging [31] [32] [33]. 

3.1 SLAM Algorithms 

Since urban search and rescue environments are significantly cluttered and unstructured [1], the 

simultaneous localization and mapping (SLAM) algorithms should be capable of acquiring a 3D 

map of a USAR environment and tracking robots’ location [34]. 2D SLAM methods such as 

Gmapping [35], HectorSLAM [36] are not suitable in this scenario because they are limited by 

their ability to retrieve 3D information and construct 3D map. Currently, the sensors deployed in 

the SLAM system are mainly Light-Detection, Ranging (LiDAR), and cameras [15]. The SLAM 

methods reviewed are categorized by the type of sensors deployed in the SLAM system [16]. 

The popular SLAM methods reviewed are visual-based SLAM [17] and Lidar-Based SLAM 

[15]. 

3.1.1 Visual-Based SLAM 

Visual-based SLAM uses different types of visual sensors, including monocular [37], stereo [38], 

and depth (RGB-D) cameras [39], to capture images of the environment [15]. These images are 

used to extract features and depth information to estimate robot’s motion and position and 

generate 2D or 3D maps [17]. Considering existing hardware installed in physical Jackal robots, 

SLAM methods that can use stereo camera as input source. In this section, papers introducing 

visual-based SLAM methods are discussed in detail, including ORB-SLAM2 [18], S-PTAM 

[20], and RTAB-Map [21]. 

The method proposed in [18] introduces a feature-based SLAM method, ORB-SLAM2. It can 

utilize monocular, stereo, and RGB-D cameras for image extraction. The system preprocesses 

input to extract ORB features [40] at the salient point for tracking, mapping, and place 

recognition, which achieves good performance regardless of camera autogain and autoexposure, 
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and illumination changes. More importantly, these features are fast to track and match, allowing 

real-time operation with good precision. The system is embedded with a place recognition 

module based on DBoW2 [41] for relocalization and performs motion-only BA (Bundle 

Adjustment) to compute the optimal structure and motion solution. ORB-SLAM2 was tested on 

KITTI [42], EuRoC [43] datasets for stereo method, and TUM RGB-D [44] dataset for RGB-D 

method and achieves the highest accuracy in most cases compared to stereo method LSD-SLAM 

[45], and ElasticFusion [46], Kintinuous [47], DVO-SLAM [48] and RGB-D SLAM [49]. 

S-PTAM[20] is a real-time keyframe-based SLAM method with stereo camera. The features 

extracted from images are binary features describing visual point-landmarks to reduce the 

storage requirements and the matching cost. Real-time loop detection and correction are included 

in the system. The generated map is refined with bundle adjustment in a local co-visible area to 

improve global consistency. S-PTAM was compared with ORB-SLAM2 and S-LSD-SLAM on 

the KITTI dataset [42] and it presented the least amount of rotation error among these three 

methods. It was tested on Level 7 s-block dataset [50] with ORB-SLAM2, showing comparable 

accuracy and similar error peaks.   

RTAB-Map (Real-Time Appearance-Based Mapping) [21] was proposed for long-term and 

large-scale environment mapping. It utilizes Stereo, RGB-D, and multi-camera as input and 

extracts GFTT (GoodFeaturesToTrack) [51] features for matching. The features detected are 

matched by nearest neighbor search with nearest neighbor distance ratio (NNDR) test [52] for 

F2M (Frame-To-Map). For F2F (Frame-To-Frame) approach, the optical flow is done directly on 

GFTT features without descriptor extraction. The system is able to provide visual odometry 

using Frame-To-Map (F2M) and Frame-To-Frame (F2F) approaches and estimate the robot’s 

position by computing transformation of the current frame to feature in keyframe or feature map 

with Perspective-n-Point (PnP) RANSAC [53]. A block matching algorithm [54] is applied to 

compute dense disparity images and convert them to point clouds for stereo images. A loop 

closure detection is introduced using the bag-of-words approach [55] for optimization. The 

performance of RTAB-Map was evaluated on KITTI [42], EuRoC [43], TUM RGB-D [44], and 

PR2 MIT Stata Center [56] dataset. Compared to ORB-SLAM2 [18] and LSD-SLAM [45] 

methods, RTAB-Map has 0.09% larger translation error and 0.0001 deg/m better rotation 
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performance on the KITTI dataset. For EuRoC and TUM datasets, ORB-SLAM2 performs better 

than RTAB-Map, but it is more computationally expensive.   

3.1.2 Lidar-Based SLAM 

LiDAR-Based SLAM system obtains accurate point clouds of the environment [15] using a laser 

sensor and generate the map. In this section, three different LiDAR-based SLAM methods are 

reviewed: RTAP-Map [21], Google Cartographer [22], and SegMatch [23]. 

RTAB-Map also includes lidar as input source [21]. The pose estimation is updated when ICP 

(iterative-closest-point) [57] is successfully done using Point to Point (P2P) or Point to Plane 

(P2N) correspondence. The pose estimation requires valid motion prediction from a previous 

registration or from external odometry transformation. The pose and map optimization are done 

the same way as visual SLAM. The evaluation was done with the same datasets as mentioned 

above in RTAB-Map visual SLAM approach in comparison to Google Cartographer [22], Karto 

SLAM [58], Hector SLAM [36] and GMapping [35]. For short-range lidar, RTAB-Map is the 

best for both sequences during evaluation. For long-range lidar, RTAB-Map performs equally 

well to Hector SLAM. 

Google Cartographer involves two processes, called local SLAM and global SLAM [59]. During 

local SLAM, new scans are matched against the current submap with a Ceres-based scan 

matcher. The submap is expressed as a probability grid where each discrete grid point shows the 

obstacle occupancy. In global SLAM, generated submaps and scans are included for loop closing 

and errors accumulated in submaps are removed. The algorithm was evaluated based on Radish 

[60] dataset benchmarking and tested in the real-world [61]. Compared with Graph Mapping, 

Google Cartographer performs better on 5 out of 7 datasets. And in real-world experiments, the 

error results are roughly in the expected order of magnitude compared to ground truth. 

In [23], a real-time laser-based 3D SLAM method, SegMatch, was introduced. The point clouds 

obtained from 3D LiDAR are first segmented into unique point clusters for matching using the 

“Cluster-All Method” [62]. Next, feature extraction is performed based on eigenvalue and 

ensemble of shape histograms. A random forest for classification and timing performances was 

deployed, the correspondences are then matched. RANSAC (random sample consensus) [63] 
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algorithm is applied to verify the potential matches. The proposed algorithm was tested using the 

KITTI dataset [64] and can successfully localize its vehicle within 35 meters 95% of the time. 

3.1.3 Limitations and Selection 

A summary of limitations for all SLAM methods mentioned above is presented in Table 1. For 

visual-based SLAM, the localization and mapping are performed by matching features extracted 

from images [19]. While requiring unobstructed cameras and adequate features for matching, the 

images' quality suffers from illumination and visibility changes in real life. However, cameras 

are cheaper, have lower power consumption and they can provide more detailed environmental 

information than other sensors, such as lidar and Radar [65]. 

For LiDAR-based SLAM, the localization and mapping are achieved by matching point cloud 

data [23]. The information extraction is limited to geometry information, ignoring semantic 

information. LiDAR can provide high-precision distance measurements but is not able to provide 

as finely detailed point clouds as images in terms of density. The performance of LiDAR-based 

SLAM is not affected by illumination changes compared with visual-based SLAM. In places 

with few obstacles, the algorithm suffers from aligning the point clouds, resulting in losing track 

of the pose prediction [15]. 

All methods mentioned in previous sections have packages implemented in ROS (Robot 

Operating System) except for SegMatch [23]. Considering all aspects, RTAB-Map is selected for 

simulation because it supports both visual-based and LiDAR-based SLAM, allowing changing 

sensors based on specific needs. Bothe methods in RTAB-Map are capable of generating 2D 

occupancy grids, which is suitable for most path planners [66]. 

Method Name Summary Description Limitation 

ORB-SLAM2 

[18] 

• Feature-based SLAM method 

• Utilizes monocular, stereo, and RGB-D 

cameras 

• ORB features are fast to track and match, 

allowing real-time operation with good 

precision 

Trajectory estimation 

not as accurate as 

RTAB-Map [67] 
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S-PTAM [20] 

• Real-time keyframe-based SLAM method 

with stereo camera 

• Binary features describing visual point-

landmarks 

Support only stereo 

camera 

RTAB-Map [21] 

• Support both visual-based and lidar-based 

SLAM 

• Features detected by F2M (Frame-To-Map) 

and F2F (Frame-To-Frame) approach 

• Provide visual odometry  

Images' quality suffers 

from illumination and 

visibility changes 

Google 

Cartographer 

[22] 

• Local SLAM and global SLAM 

• Local SLAM generates submaps expressed 

in probability grids with new scans 

• Global SLAM includes submaps and scans 

for loop closure and error removal 

Information extraction 

is limited to geometry 

information 

SegMatch [23] 

• “Cluster-All Method” segments point 

clouds into unique point clusters 

• RANSAC is used for verifying the potential 

matches 

No integration with 

ROS 

Table 1: A summary of all SLAM methods and their limitations 

3.2 Path Planning Algorithms 

Path planning is a crucial task in autonomous robotics. It involves defining a path from the initial 

position to the goal position avoiding obstacles in the environment [68]. In this section, papers 

pertaining to path planning are reviewed. These papers are categorized as global path planners 

[69] and local path planners [70]. 

3.2.1 Global Path Planner 

Global path planners reviewed in this section are categorized as grid-based approaches [25], 

evolutionary approach [71], and probability-based approaches [66]. 

3.2.1.1 Grid-Based Algorithm 

Grid-based path planning utilizes 2D occupancy grid. The optimal path is calculated based on the 

property of each grid cell. 
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A* algorithm [72] finds the shortest path from initial node qinit to goal node qgoal. It employs a 

function f(q) = g(q) +h(q), where g(q) estimates the cost of the shortest path from initial node qinit 

to q, and h(q) estimates the cost of the shortest path from q to qgoal. The costs are calculated based 

on either Euclidian distance or Manhattan distance. The experimental result shows that the best 

result in path length corresponds to A* algorithm, but the processing time is more than 30% 

higher compared to probabilistic Roadmap and genetic algorithms [68]. 

D* algorithm [25] is a modified dynamic version of the A* algorithm, where cost functions are 

updated once new obstacles are detected. A complete map is not required to compute the cost 

function. Instead of using g(q) to represent the cost from current node q to goal node qgoal, it 

calculates the cost backward from the destination cell. Recomputations are required every time 

obstacles are detected. It suits the dynamic and unknown environment. In the 8x8 grid test, D* 

algorithm has 0.003 second longer execution time than A* algorithm. 

3.2.1.2 Evolutionary Algorithm 

Genetic Algorithm is a stochastic search technique that mimics the natural evolution process 

inspired by Darwin [71]. Potential solutions to a problem are encoded as chromosomes, which 

form a population [73]. In path planning, chromosomes are used to represent the grid cells of the 

mobile robot environment. GA generates a population of possible paths iteratively, and the 

population is evaluated by the predefined fitness function. The crossover strategy prevents the 

solution from converging to local minima. GA was tested in 10x10 and 100x100 grid world and 

it was able to find the shortest path in different environment setups within 100 generations [74]. 

3.2.1.3 Probabilistic-based Algorithm 

Rapidly-Exploring Random Tree (RRT) [27] is a probabilistic-based algorithm, solving path 

planning without nonholonomic constraints. The tree incrementally grows from the starting point 

qinit to a random number of new nodes qnew until it hits the endgoal qgoal. And two different 

functions, creation and expansion of the tree, are used. The expansion of the tree is one way from 

starting point to end point whereas the expansion of the tress is bidirectional to improve the time 

efficiency. RRT algorithm performs better in execution time compared to RRT*, but worse than 
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A* and HPA* algorithms. In addition, the path length computed by RRT is the longest among all 

algorithms, including A*, HPA*, MEA*, etc [74]. 

 

Figure 1: RRT exploration process [74] 

3.2.1.4 Limitation and Selection 

A summary of all SLAM methods discussed, and their limitations are shown in Table 2. The 

computation cost of grid-based algorithm and RRT algorithm increases considerably for large 

scale and high-dimensional environment because of the usage of grid map [74]. Parameter 

tunning is one disadvantage of evolutionary algorithms in addition to huge computation cost 

increment. RRT requires a large number of iterations and samples to avoid local minima, which 

increases the need for memory [71]. However, robots are not equipped with high-power 

computers with enough computer memory, which limits the potential of using the RRT 

algorithm. 

Considering difficulties in parameter tuning and computation power optimization, the 

evolutionary approach is not considered an appropriate approach in the USAR scenario. Since 

the chosen SLAM method RTAB-Map can generate a 2D occupancy grid for both visual-based 

and LiDAR-based approaches, the grid-based methods are chosen. In addition, A* algorithm 

exists in ROS as one of the main global planners. Thus, the A* algorithm is chosen for future 

simulation development. 
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Method Summary Limitations 

A* algorithm [72] 
• Grid-based path planning 

• Cost function f(q) = g(q) +h(q) 

The processing time is more 

than 30% higher compared to 

the probabilistic Roadmap 

and genetic algorithms. 

D* algorithm [25] 

• Modified dynamic version of the 

A* algorithm 

• Cost functions are updated once 

new obstacles are detected 

Computation cost increase 

greatly for large scale and 

high-dimensional 

environment. 

Genetic 

Algorithm [73] 

• Generates a population of possible 

paths 

• Population is evaluated by the 

predefined fitness function 

Parameter tunning is hard 

Rapidly-

Exploring 

Random Tree 

(RRT) [66] 

• Probabilistic-based algorithm 

• Tree incrementally grows from the 

starting point until it hits the end-

goal 

Requires a large number of 

iterations and samples to 

avoid local minima, 

increasing memory usage. 

Table 2: A summary of global path planning algorithms and their limitations 

3.2.2 Local Path Planner 

In this section, local path planners available in ROS are reviewed, including Dynamic Window 

Approach (DWA) local planner [28], Time Elastic Band (TEB) local planner[29] and EBAND 

local planner [30]. 

3.2.2.1 Dynamic Window Approach (DWA) local planner 

The DWA local planner deals with the local path planning problem in the 2D occupancy grid 

[28]. The DWA planner discretely proposes linear velocity (dx, dy) and angular velocity (dƟ). 

For each velocity sample, forward simulation from the current robot’s position is performed to 
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predict the position of the robot after the proposed velocity is applied for some short period of 

time (Figure 2). The results from forwarding simulation are evaluated and unsuccessful 

trajectories are forbidden. The best trajectory is chosen, and the corresponding velocity is sent to 

a mobile base. The algorithm is tested in 2D corridor with static obstacles. The experiments 

showed that the DWA planner is very robust and successfully handled collision avoidance tasks, 

with a safe maximum driving speed up to 95 cm/s, while the computation time is within 0.25 sec. 

 

Figure 2: Example of forward prediction of DWA local planner [75]  

3.2.2.2 Time Elastic Band (TEB) local planner 

TEB local planner is introduced in [75]. It accounts for the velocity and acceleration constraints 

as well as surrounding obstacle distance, with a weight assigned to each. It generates a sequence 

of poses for discrete time intervals. Similar to the DWA planner, the linear and angular velocity 

will be fed into a mobile base controller for navigation. The results from simulations and 

experiments illustrates that the approach is robust and provides a smooth path [76]. In addition, 

TEB local planner takes into consideration of geometric constraints. In recent version of 

teb_local_planner, it supports dynamic obstacles. However, the performance depends on the 

obstacle tracking and state estimation accuracy. As shown in figure 3, the TEB local planner 

collides as its preferred trajectory is elongated by the motion of human. 
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Figure 3: Scenario 1: Traces of robot and human’s movement [78] 

3.2.2.3 EBAND local planner 

EBAND local planner [30] produces a collision-free path by two artificial forces: contraction 

force, and repulsion force. The contraction force helps plan a smooth path, while the repulsion 

force keeps the robot away from obstacles. The global trajectory is modified such that the robot 

can smoothly follow the path. Results showed that the EBAND planner was less smooth 

compared to DWA and TEB planner and experiences similar test results as TEB planner in terms 

of execution time. This algorithm was implemented in ROS as eband_local_panner package [77]. 

3.2.2.4 Limitations and Selection 

DWA local planner does not consider the robot’s geometric constraints, which means the robot 

will not keep a safe distance away from obstacles. This may cause collisions [78]. For EBAND 

and TEB local planner, the direction of dynamic obstacles’ movement may make the path 

planning worse. In scenario 2 (Figure 4) when a human ignoring the approaching robot, the 

initial optimal trajectory passes between the wall and the human becomes infeasible. The 

updated trajectory will be elongated to avoid the human, and eventually cause collision with the 

wall [30]. 

 

Figure 4: Scenario 2: Traces of robot and human’s movement [78] 
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Due to the requirement of multiple robots to work collaboratively in the same environment, we 

need to consider the effect of one robot crossing the other’s planned path. Thus, DWA planner 

was chosen regardless of the geometric constraints of the robots. In addition, DWA planner is the 

default local planner implemented in Jackal. 

3.3 Map Merging Algorithms 

To construct a complete global map of the environment, the data collected by different robots 

need to be integrated into a single map. Moreover, the integration should be done as fast as 

possible to facilitate the environment exploration process [31]. If the initial position of robots is 

known, map merging is a straightforward extension of the single robot mapping [32], [33]. This 

is because the transformation between local maps is known; map merging is a simple addition 

operation. However, the integration of maps when robots do not know their relative position is 

more complicated. With few correspondences in local maps, feature extraction will fail, and 

transformation between different local maps can be erroneous. 

The method proposed in [33] allows keeping multiple disconnected maps in memory. The map 

merging is done by computing a transformation between two overlapping regions by scan 

matching. One of the maps is then transformed such that two overlapping areas fit. A loop 

closing operation is applied to refit the two maps to improve the accuracy of merging. The 

algorithm was tested with RoboCup Rescue Virtual Robots Competition maps [79] and the 

Cogniron dataset [80]. 

The approach in [31] describes an adapted particle filter in combination with a predictive model 

of the environment in addition to estimation of overlaps. The most likely hypothesis is 

determined at each iteration of the particle filter. The algorithm was tested with a sequence of 

data collected in three environments. The experiment showed that the map-merging algorithm 

generated accurate, consistent maps in all 12 runs and actively verified the relative location of 

robots. 

In our environment exploration experiment, the initial positions of the robots are known. Thus, 

straight forward map merging algorithm is more than enough to handle this scenario. In ROS, 

map_merge node was implemented in m_explore package and selected for future simulations. 
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4. Methods 

This section will describe the final simulator design in detail, which is divided into four 

components: Environment Simulation, Multi-Robot Simulation, Map Merging, Integration with 

MADE-Net 

4.1 Environment Simulation  

The simulator should be flexible enough to provide customized cluttered and unstructured 

environment by using various types of obstacles and placing them randomly in the scene, Figure 

5. The environment configurations are saved in .world files, where the size of the workspace, 

type of obstacles, and their placement can be customized through gazebo environment 

configuration.  

          

(a)                                                                        (b) 

Figure 5: a) Bird-eye view of the simulated environment, b) closer view of the environment 

4.1.1 Exploration Boundary 

The boundary of the environment used is wall models built with gazebo building editor. The 

exploration environment is located from −
𝑒𝑛𝑣_𝑠𝑖𝑧𝑒

2
 to  

𝑒𝑛𝑣_𝑠𝑖𝑧𝑒

2
 for both x and y axes. The wall 

texture was modified to red brick for SLAM to extract features more easily.  
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Figure 6: 20x20 exploration boundary built with Gazebo Building Editor 

4.1.2 Obstacles 

Gazebo provides various obstacle models in the online library, such as construction cones, 

garbage bins, dumpsters, bookshelves, etc., Figure 7. 

   

 

Figure 7: Garbage bin, bookshelf, and dumpster obstacle model 
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4.2 Multi-Robot Simulation  

As mentioned above, the robot in simulation is designed with one ZED2 camera and one VLD-

16 lidar in Figure 8 to allow the application of both visual and LiDAR SLAM methods.  

      

(a)                                                         (b) 

Figure 8: a) 3D view of Jackal with ZED2 camera and VLP-16 lidar[13], b) simulated 3D view 

of Jackal with ZED2 camera and VLP-16 lidar 

Jackal is integrated with high torque 4x4 drivetrain for rugged all-terrain operations [13]. It has 

an onboard computer, GPS, and IMU, which is suitable for research in all terrains. It is already 

integrated with ROS as ros-melodic-jackal-simulator package [81].  

Jackal robots can be spawned in any world in Gazebo by spawn_node in modified 

spawn_jackal.launch file in jackal_gazebo package to account for spawning multiple robots. By 

default, a robot_state_publisher node is initialized for each robot to calculate the robot’s forward 

kinematics and publishes transformation through tf.  

The robot configuration, including customized sensors, will be discussed in Experiment section.  

4.2.2 RTAB-Map SLAM 

RTAB-Map was selected for robot localization and mapping. Visual SLAM mode was used 

because it can collect more information than lidar SLAM mode. A ZED2 camera ROS plugin is 

not available at the moment; therefore, a customized stereo-camera plugin was used. 

libgazebo_ros_multicamera.so was installed and added to the Jackal robot URDF (Unified Robot 

Description Format) file [82] to simulate the stereo camera. It will create two camera topics 

(from the left and right cameras), and the output image is shown in Figure 9. 
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Figure 9: Left and right raw image obtained from stereo camera. 

To simplify the matching problem, the raw images are passed through stereo_image_proc node 

to perform rectification [83] which warps the images taken by stereo camera such that they 

appear equivalent to images taken with only horizontal displacement, and de-mosaicing which 

reconstructs a full-color image [84]. A 3D point cloud map is then created by matching features 

extracted from these images, shown in Figure 10 

 

a) Point cloud extracted from stereo images 
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b) Actual environment  

Figure 10: An 3D point cloud generated from stereo images 

A 2D occupancy grid (shown in Figure 11) is created by projecting the 3D point clouds on the 

ground plane (e.g., x-y plane). The black pixels are space occupied by obstacles. And the red 

modules represent Jackal robots. 

 

a) Occupancy grid generated from point cloud data in Figure 10 
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b) Actual environment bird eye view 

Figure 11: An occupancy grid generated by RTAB-Map 

4.2.3 Navigation 

After constructing the 2D occupancy map and localizing themselves on the map, the robots can 

then navigate to arbitrary locations. The move_base package is implemented to achieve global 

navigation in the simulated environment [85]. This package is commonly used for robot 

navigation, and it is integrated with Jackal official package, which can be directly used. Some 

modifications should be made to consider different namespaces for each robot. With the chosen 

global planner (A*) and local planner (DWA), robots can complete navigation goals assigned by 

the proposed DRL model (MADE-Net in this application) [7]. Figure 12 shows the 

recommended navigation stack by ROS. In general, the robot should subscribe to sensor readings 

and occupancy maps to construct global and local costmaps, which will be used by global and 

local planners to generate a feasible path. Velocity commands are calculated and sent by 

local_planner to move the robot.  
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Figure 12: Navigation stack setup required for move_base node [87] 

The move_base package utilizes 2D occupancy map to calculate a global trajectory and local 

trajectory when a navigation goal is set, Figure 13. The green line and orange line are the global 

and local trajectories that one robot should follow, respectively.   

 

Figure 13: Global Path (green) and Local Path (orange) 
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4.3.3 Map Merge 

In this USAR simulator, the communication focuses on the map exchange when two robots 

satisfy the conditions of map exchange: 1) two of the robots are within a predefined 

communication range, and 2) there is no obstacles or walls in their line of sight.  

Now that each robot generates its 2D occupancy map with its own RTAB-Map node, a map 

merging node is introduced such that they can exchange their map information and develop a 

merged map. The map exchange process of two robots is shown in Figure 14. 

 

     

Figure 14: a) Two robots’ local maps before map exchange    b) robots’ local maps after map 

exchange 

The previous map merging algorithm used was map_merge node implemented in m_explore 

package [86]. However, this node introduced some additional errors in map processing, which 

resulted in misalignment between the local map and the merged map, in Figure 15.  

 

Figure 15: Misalignment of map using existing m_explore package 
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Therefore, a customized python script was built that deals with occupancy grid directly utilizing 

NumPy array [87]. The customized script subscribes to local map topics generated by SLAM 

algorithm and greedily combines the 2D occupancy grids. For faster computation speed, each 

occupancy grid is converted from tuple to NumPy array. The algorithm works for an arbitrary 

number of robots. A demonstration of the map merging process with two robots is shown in 

Figure 16. 

            

a) 2d occupancy map – jackal1                          b)  2d occupancy map – jackal2 

 

c) Merged map 

Figure 16: Map merging demo 
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The map merging part of the algorithm rqt_graph is shown in Figure 17. The “base_map_server” 

nodes are initially publishing empty maps, making “jackal1/map_merge” and 

“jackal2/map_merge” nodes only to publish their local 2D occupancy map generated by rtabmap 

SLAM. Topics “jackal1/map” and “jackal2/map” are subscribed by “map_merge” node [88], 

which publishes the global “map”.  The merged map of two robots is running in the background 

at the beginning. Once two robots meet the communication criteria, the global map will be saved 

by “map_saver” node and the “base_map_server”s will start to publish the saved map [88]. 

 

Figure 17: Partial rqt_graph of the system focusing on map merge 

4.3.3 Integration with MADE-Net 

The integration with MADE-Net is accomplished by jackal_waypoint.launch launch file, which 

takes in desired goal location, orientation and wait time after reaching the goal for each robot and 

publishes command to move_base_simple/goal for move_base node to execute. An example of a 

set of waypoints is shown in Figure 18.  

 

Figure 18: Example waypoints used in navigation 
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5. Experiments and Results 

5.1 Experiments 

To test the scalability of the simulator and integration with deep reinforcement model, the 

following experiment setups are proposed.  

5.1.1 Computer Specification 

The computer specifications are shown in the table below. In total, two computers are used 

during the experiments.  

 Computer 1 Computer 2 

CPU Intel i7 11800H 8-core AMD Ryzen threadripper 1950x 16-core 

processor x32 

RAM 16GB 110GB 

GPU NVDIA GeForce 3060 NVDIA GeForce 2070 

Table 3: The computer specifications in experiment simulations 

5.1.2 Robot Setup 

The jackal robot is modified to be equipped with VLD-16 Lidar and ZED2 stereo Camera, by 

importing the velodyne_gazebo_plugins and stereo_camera_plugin. The Velodyne lidar is 

located (x = 0.120m, y = 0m, z = 0.05m) with respect to the robot’s origin. The stereo camera is 

located at the (x = 0.25m, y = 0m, z = 0.132m) with respect to the robot’s origin.  

The robots used in the experiment were equipped with RTAB-Map SLAM for constructing maps 

and localization. A* algorithm and DWA local planner were used for global and local path 

planning.  

Each robot has a communication range of 5 meters, within which the robots can exchange their 

information, including local maps, robot positions, etc.  
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5.1.3 Validation Environment Setup 

The current environments generated for simulation are 20m x 20m, 30m x 30m, 40m x 40m, and 

60m x 60m, which various densities and randomly placed obstacles, in Figure 19. The spacing 

between diagonally placed obstacles was larger than the robot size, to allow robot to go through. 

The environment setup can be expanded to any arbitrary size according to different training 

needs.  

                    

  a) 60 x 60 m2                                                                   b) 40 x 40 m2 

                     

  c) 30 x 30 m2                                                                   d) 20 x 20 m2 

Figure 19: Simulated environments for validation process 
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5.1.4 Experiment Procedure 

Once the robots and environment are set up properly in Gazebo, the next step is to run the 

navigation tasks assigned by MADE-Net. The robots were spawned at three different robot team 

starting positions, bottom left corner, top right corner, and a randomly selected position from the 

middle of the map, shown in Figure 20. In bottom left corner and top right corner trials, the 

robots localized further from the corner started navigation first, whereas in the third trials, the 

robots started navigation at the same time. Each trial was repeated in four different environment 

sizes with five different robot team sizes.  

                 

a) Top right corner initial position             b)  Middle initial position 

 

c)  Bottom left corner initial position 

Figure 20: Three different initial position for robot team 
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The test was terminated when 95% of the environment was globally explored by the team. For 

each experiment, the total exploration time was recorded based on the simulation time shown in 

gazebo.   

5.2 Results and Discussion 

The total exploration time with different team sizes and environment sizes is averaged across 3 

cases with different team starting positions, shown in Figure 21, Table 4. In general, the 

exploration time experienced a decreasing trend with the increment of robot team size. However, 

there was barely any improvement in total exploration time in 20x20, 30x30, and 40x40 

environments with 6 robots. Contrariwise, the teams significantly improved exploration time, 

even with 6 robots in a 60x60 environment. This is due to more space for robots to navigate 

without interference with other robots.  

 

Figure 21: The total exploration time for each environment size and robot size combinations 
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Exploration 

Time (s) 

Robot Team Size 

2 Robots 3 Robots 4 Robots 5 Robots 6 Robots 

Environment 

Size 

20x20 294 241.666667 195.33333 159.66667 161.333333 

30x30 643 470.6666667 400.666667 300.666667 299 

40x40 1198.66667 774 617.66667 579.33333 565 

60x60 2854 2016.666667 1777 1709 1319 

Table 4: The total exploration time for each environment size and robot size combinations 

The widespread distribution of robots improved exploration efficiency when more robots were 

added to the scene. However, dispatching more robots into the scene also results in more time for 

each robot to navigate between waypoints and avoid collisions with teammates. Especially at the 

beginning of exploration, when robots were gathered in one corner, the time for each robot to 

navigate significantly increased as the team size increased. This can be validated by the shorter 

exploration time in the case where robots started in the middle of the environment and spread out 

to distinct orientations, shown in Table 5.  

Exploration 

Time (s) 
2 robots 3 robots 4 robots 5 robots 6 robots 

BL 720 407 473 327 360 

TR 667 530 342 286 313 

MID 445 445 377 277 265 

Table 5: The exploration time for each starting position in 30x30 environment 

6. Conclusion and Future Work 

In conclusion, the 3D realistic simulator design can simulate environment exploration with 

multi-robots for deep reinforcement training. A 3D unstructured world that resembles the 2D 

grid world for training can be customized in Gazebo simulator. An arbitrary number of robots 

with different initial positions can be included in the world to perform navigation tasks assigned 

by MADE-Net and generate macro-observations maps required using RTAB-Map SLAM 

algorithm. In addition, the communications between robots are represented by simulating map 

merging processes. A merged map can be produced when two robots meet.  
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The design was tested with 60 trials with four different environment sizes, five robot team sizes, 

and three different initial positions. In 95% of the trials, the environments were explored 

completely. The simulated results met the expectation that the exploration time improves with 

the increment of team size [7].  

However, there are some limitations in this design that can be improved in the future. The 

current simulation only supports visual-based SLAM. Thus, it is impossible to extract 

observations at the back of the robot, which is one of the reasons why the environments were not 

explored completely. If LiDAR-based SLAM is introduced into the simulator, it will allow users 

to get 360 degree observations, resulting in more flexibility in customizing robot exploration 

configurations. Also, a more robust and fast map merging algorithm with the ability to clear 

moving obstacles can be designed to make corrections to the merged map. In addition, rough 

terrain and unstructured obstacles can be included in the simulation environment to further 

validate the performance reinforcement learning in more realistic urban search and rescue 

scenes.     
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