A realistic Simulator in Search
and Rescue

by
Yuhan Zhu
Supervisor: Prof. Goldie Nejat
April 2022

B.A.Sc. Thesis

&

Division of Engineering Science

UNIVERSITY OF TORONTO

Abstract

To date, the robotics application in Urban Search and Rescue (USAR) has been a promising
research area. It provides a safe solution to assist rescue workers in reducing potential risk for
workers to enter unsafe structures and increasing the speed of response by increasing robot
quantities in rescue scenes. A high-leveled autonomous robot team requires efficient
collaboration, which requires reliable communication with their teammates, and centralized
control center. However, in USAR scenarios, communications are frequently interrupted. Thus, a
multi-agent Deep Reinforcement learning model was recently presented to handle poor
communication issues in an unknown cluttered environment. To test the performance of the DRL
model, integration with the real-world is required. While extracting large datasets from physical
robots is expensive and unsafe, a real-world simulator was designed to accelerate the training
process. Therefore, in my thesis project, a 3D realistic simulator in search and rescue is proposed
for future deep learning research. The 3D simulator was tested on sixty trials with three different
initial positions, five robot team sizes, and four environment sizes. The results demonstrate that
the robot fleet could improve exploration efficiency with the increment of robots, which met the
expectation. The 3D realistic simulator has excellent potential for further improvement to mimic
real search and rescue scenes.

Acknowledgements
Throughout the writing of this thesis project, | have received a great deal of support and
assistance.
I would first like to thank my supervisor, Professor Goldie Nejat, whose expertise was invaluable
in formulating the research questions and methodology. Your insightful feedback pushed me to
sharpen my thinking and brought my work to a higher level.
| gratefully recognize the help of Ph.D. student Aaron Tan whose valuable guidance throughout
my studies and detailed feedback was influential in shaping my experiment methods and results.
My appreciation also goes out to my family and friends for their encouragement and support
throughout my studies.

Table of Contents

AADSTTACT ... bbb R Rttt bbbttt e [
ACKNOWIBAGEMENTS ...ttt e e s te et e re e beenbesneesteeeesreesreeneens ii
LISE OF FIQUIES ...ttt et e et et e e s e s ae e teese e s beenaeaneesneeseaneesreaneens v
TS 0 N 1= o] [P SRPR Vi
1. BACKGIOUNG ...ttt bbb bbb b bbb re s 1
2. ODJECLIVES ...ttt bbbt bbbt e bbbt b R e Rt n bt bbb 1
2.1 SIMUIAtioN CONFIGUIALION.couiiiiiiiieicee bbb 2
2.2 RODOE SIMUIALION ... bbbt st sb et ne e 2
2.2.1 Path PIANNING ...ocviiieiiee et sttt et e e te e re e nreere s 2
2.2.2 SLAM ..ottt bttt nenre e 2
2.2.3 RODOt COMMUNICALION ...ttt ettt bbb nreas 2

T (=] (0 (N (=T SRR 3
3.1 SLAM AIGOTTEAMS ...ttt b 3
3.1.1 ViSUAI-BASEA SLAMoiiii ettt sttt sttt e reenreenne s 3
3.1.2 Lidar-Based SLAM......cci ottt nre e 5
3.1.3 Limitations and SEIECTIONccviieiiiiieie st 6

3.2 Path PIanning AlGOritimScciiiiiiiiecce ettt st reere s 7
3.2.1 GloDal Path PIANNEoiiiiiiiieiieieeee sttt nneas 7
3.2.2 LOCAl Path PIANNEToiiiiii et 10

3.3 Map Merging AlIGOItNMSooiiiiiiiee s 13
|V 1= 1 0o SR 14
4.1 Environment SIMUIALIONooveiiieiiece et enee e 14
4.1.1 EXPlOration BOUNGAIYcccouiiiiiiiieiiiesicseeeeeee et 14
A.1.2 ODSTACIES ...ttt ettt re e 15

4.2 MUIti-RODOt SIMUIALION ..o 16
4.2.2 RTAB-MaAP SLAMoiiiiiiet ettt sttt e 16
A B\ 1V To T LA o] o RSP UPPPR SRR 19
TG Y F- Vo I 1V, =T (o[RS 21
4.3.3 Integration With MADE-NEL..........cooiiiiiiee e 23
5. EXPeriments ana RESUITS.cooiiiiiiiiiciee et 24
5.1 EXPEITIMENTS ..ottt e bbbttt b e bbbt et e s et e bbbt et 24

5.1.1 Computer SPECITICATIONcviiieiicicceese e 24

TN I o (o] 10| AT (U] o SRS 24
5.1.3 Validation ENVIrONMENt SELUP.......ccoveiierieiieii et ste e se e 25
5.1.4 EXPEriMENt PIrOCEAUIE ..ottt 26

5.2 RESUILS AN0 DISCUSSIONviitieiieieeiiesieeie sttt sttt reesbeenae e e steensesreesseeneesneeneas 27
6. ConClUSION AN FULUIE WOTKcoiiiiie ettt 28
(=T 1=] 0TSSR RRTORRTRN 30

List of Figures

Figure 1: RRT eXploration ProCESS [74]ooieieieieieiiesie sttt 9
Figure 2: Example of forward prediction of DWA local planner [75]ccccoovevviiiiiievciiieceens 11
Figure 3: Scenario 1: Traces of robot and human’s movement [78]cccccovvvvviiieniiieniiie e 12
Figure 4: Scenario 2: Traces of robot and human’s movement [78]ccccooviiiieiiniiinniiiieeen. 12
Figure 5: a) Bird-eye view of the simulated environment, b) closer view of the environment.... 14
Figure 6: 20x20 exploration boundary built with Gazebo Building Editor...............cccccvvvveinennnns 15
Figure 7: Garbage bin, bookshelf, and dumpster obstacle model.............ccccoovvevviieiiieveiiesiens 15
Figure 8: a) 3D view of Jackal with ZED2 camera and VVLP-16 lidar[13], b) simulated 3D view
of Jackal with ZED2 camera and VLP-16 HAar..........cccoceiieiiiieiiee e e 16
Figure 9: Left and right raw image obtained from Stereo Camera...........cccoceevveveiceeiieceeieeseenns 17
Figure 10: An 3D point cloud generated from Stereo iMages..........ccovveieieeiieresiee e 18
Figure 11: An occupancy grid generated by RTAB-Map........cccooviiiiiinininiiceeee e 19
Figure 12: Navigation stack setup required for move_base node [87]cccccvvrrvrereniinnnnnnnn. 20
Figure 13: Global Path (green) and Local Path (0range).........ccceceeeeiieieiiieie e 20
Figure 14: a) Two robots’ local maps before map exchange b) robots’ local maps after map
BXCNANGE ...ttt bR R Rt b ettt bbb ene s 21
Figure 15: Misalignment of map using existing m_explore packageccccooevererencienennnnn. 21
Figure 16: Map Merging QEIMOcoieiiiiieiecie ettt e sra e te e e e sreesteenesneesaeeeeas 22
Figure 17: Partial rqt_graph of the system focusing on map Merge.........c.cccecvevvviveieevesieseennns 23
Figure 18: Example waypoints used in NAVIGAtIONccoviiiiiirieicie e 23
Figure 19: Simulated environments for validation ProCeSScccoeerereriniesieeieienese e 25
Figure 20: Three different initial position for robot team............c.cccevveiiiiccie i 26
Figure 21: The total exploration time for each environment size and robot size combinations... 27

List of Tables

Table 1: A summary of all SLAM methods and their [imitationsccccceevveviiieiiere e 7
Table 2: A summary of global path planning algorithms and their limitations...............c..cc........ 10
Table 3: The computer specifications in experiment SIMUlationscccoevvvieni e 24

Table 4: The total exploration time for each environment size and robot size combinations 28

Table 5: The exploration time for each starting position in 30x30 environment.......................... 28

Vi

1. Background

The application of robots in Urban Search and Rescue (USAR) has gained significant attention in
recent years. Due to their replaceability, repairability, and upgradable feature, a large number of
collaborative robots are dispatched in a coordinated manner to explore unknown cluttered scenes
and search for victims [1]. The methodologies can be categorized as centralized or decentralized
in multi-robot system (MRS), each with its advantages and drawbacks. The centralized systems
can optimize the performance with a global knowledge of the system, but they suffer from single
point failure of the server [2]. The decentralized system requires strong understanding of the
environment to pre-design strategies for exploration [3], but depends on information exchange
locally with neighboring robots [4]. However, in USAR missions, communication with a
centralized computer is often unreliable, and local communication with teammates is limited by
both robots’ transmission range and environment (e.g., obstacles) [5]. As a result, both traditional
methodologies are hard to achieve satisfactory performance with respect to mission time, energy
consumption, etc. To address these performance degradations, robots should learn to predict
other robots’ behaviors [6]. A multi-agent DRL method known as MADE-Net (Macro Action
Decentralized Exploration Network) was recently presented to handle the poor communication
issue in the unknown cluttered environment [7]. It learns the teammates’ intentions during
centralized training and executes exploration tasks in decentralized manner.

To further validate the performance of MADE-Net in addressing the communication dropout
challenges, integrating the architecture into real-world environments with physical robots is
needed. However, DRL methods require considerable training data, and extracting training
samples directly from physical robots is time-consuming and unsafe [8]. A real-world simulator
for multi-robot exploration will accelerate the learning process. Previous works have been done
to construct USAR customizable environments with Gazebo 3D simulator and perform frontier
exploration in the environment [9] using Clearpath Husky robot with a stereo camera and a
thermal camera. However, there is no simulator for interfacing the USAR 3D simulator with

deep learning frameworks to support multi-thread training [10].

2. Objectives

This project aims to build a 3D simulator to support deep reinforcement learning in USAR

scenarios. The following requirements should be met.

1

2.1 Simulation Configuration

To further evaluate the performance of deep learning model regarding the environment
exploration, the simulator should be flexible in terms of spatial configurations (e.g., obstacle
densities, terrain steepness, etc.), robot configuration, robot team size (from 1 to 6), and the
environment size (20m x 20m, 30m x 30m, 40m x 40m, etc.) based on the multi-thread training

requirements.

2.2 Robot Simulation

The USAR 3D simulator should be capable of including any robot configuration in simulations
by editing the URDF file and control parameters. As for this particular application of the
simulator, given that the physical robots used for real-world testing are Clearpath Jackal robots
with ZED2 stereo camera [11] and Velodyne lidar [12], the USAR 3D simulator will need to be

modified to accommodate the specified Jackal configurations [13].

2.2.1 Path Planning

The simulated robots should be capable of performing their navigation tasks (i.e., navigation
between arbitrary initial and goal locations) based on the tasks allocated by the deep learning
model (MADE-Net DRL model in this application) in a decentralized manner. Herein, a task is
defined as an exploration goal, which is spatially distributed within the unknown environment.

Each robot is assigned a unique task to navigate simultaneously.

2.2.2 SLAM

The simulated robots should be equipped with SLAM (Simultaneous Localization and Mapping)
to construct maps of the unknown environment and track robots’ localization while navigating

[14]. The generated map will be taken as high-level observations by the proposed DRL model.
2.2.3 Robot Communication

The simulated robots explore the environment in a decentralized manner. Thus, no centralized
communication is needed; but the robots should be capable of exchanging information and

performing map merging operations within a predefined sensing range.

3. Literature Review

Due to the existence of previous work on USAR environment simulator [9], the 3D simulator
platform will not be reviewed in this section. The main components reviewed in detail is SLAM
[15] [16] [17] [18] [19] [20] [21] [22] [23], path planning [24] [25] [26] [27] [28] [29] [30] and
map merging [31] [32] [33].

3.1 SLAM Algorithms

Since urban search and rescue environments are significantly cluttered and unstructured [1], the
simultaneous localization and mapping (SLAM) algorithms should be capable of acquiring a 3D
map of a USAR environment and tracking robots’ location [34]. 2D SLAM methods such as
Gmapping [35], HectorSLAM [36] are not suitable in this scenario because they are limited by
their ability to retrieve 3D information and construct 3D map. Currently, the sensors deployed in
the SLAM system are mainly Light-Detection, Ranging (LiDAR), and cameras [15]. The SLAM
methods reviewed are categorized by the type of sensors deployed in the SLAM system [16].
The popular SLAM methods reviewed are visual-based SLAM [17] and Lidar-Based SLAM
[15].

3.1.1 Visual-Based SLAM

Visual-based SLAM uses different types of visual sensors, including monocular [37], stereo [38],
and depth (RGB-D) cameras [39], to capture images of the environment [15]. These images are
used to extract features and depth information to estimate robot’s motion and position and
generate 2D or 3D maps [17]. Considering existing hardware installed in physical Jackal robots,
SLAM methods that can use stereo camera as input source. In this section, papers introducing
visual-based SLAM methods are discussed in detail, including ORB-SLAM2 [18], S-PTAM
[20], and RTAB-Map [21].

The method proposed in [18] introduces a feature-based SLAM method, ORB-SLAM2. It can
utilize monocular, stereo, and RGB-D cameras for image extraction. The system preprocesses
input to extract ORB features [40] at the salient point for tracking, mapping, and place

recognition, which achieves good performance regardless of camera autogain and autoexposure,

and illumination changes. More importantly, these features are fast to track and match, allowing
real-time operation with good precision. The system is embedded with a place recognition
module based on DBoW?2 [41] for relocalization and performs motion-only BA (Bundle
Adjustment) to compute the optimal structure and motion solution. ORB-SLAMZ2 was tested on
KITTI [42], EuRoC [43] datasets for stereo method, and TUM RGB-D [44] dataset for RGB-D
method and achieves the highest accuracy in most cases compared to stereo method LSD-SLAM
[45], and ElasticFusion [46], Kintinuous [47], DVO-SLAM [48] and RGB-D SLAM [49].

S-PTAM]20] is a real-time keyframe-based SLAM method with stereo camera. The features
extracted from images are binary features describing visual point-landmarks to reduce the
storage requirements and the matching cost. Real-time loop detection and correction are included
in the system. The generated map is refined with bundle adjustment in a local co-visible area to
improve global consistency. S-PTAM was compared with ORB-SLAM2 and S-LSD-SLAM on
the KITTI dataset [42] and it presented the least amount of rotation error among these three
methods. It was tested on Level 7 s-block dataset [50] with ORB-SLAM2, showing comparable

accuracy and similar error peaks.

RTAB-Map (Real-Time Appearance-Based Mapping) [21] was proposed for long-term and
large-scale environment mapping. It utilizes Stereo, RGB-D, and multi-camera as input and
extracts GFTT (GoodFeaturesToTrack) [51] features for matching. The features detected are
matched by nearest neighbor search with nearest neighbor distance ratio (NNDR) test [52] for
F2M (Frame-To-Map). For F2F (Frame-To-Frame) approach, the optical flow is done directly on
GFTT features without descriptor extraction. The system is able to provide visual odometry
using Frame-To-Map (F2M) and Frame-To-Frame (F2F) approaches and estimate the robot’s
position by computing transformation of the current frame to feature in keyframe or feature map
with Perspective-n-Point (PnP) RANSAC [53]. A block matching algorithm [54] is applied to
compute dense disparity images and convert them to point clouds for stereo images. A loop
closure detection is introduced using the bag-of-words approach [55] for optimization. The
performance of RTAB-Map was evaluated on KITTI [42], EuRoC [43], TUM RGB-D [44], and
PR2 MIT Stata Center [56] dataset. Compared to ORB-SLAM2 [18] and LSD-SLAM [45]
methods, RTAB-Map has 0.09% larger translation error and 0.0001 deg/m better rotation

performance on the KITTI dataset. For EUROC and TUM datasets, ORB-SLAM2 performs better

than RTAB-Map, but it is more computationally expensive.
3.1.2 Lidar-Based SLAM

LiDAR-Based SLAM system obtains accurate point clouds of the environment [15] using a laser
sensor and generate the map. In this section, three different LIDAR-based SLAM methods are
reviewed: RTAP-Map [21], Google Cartographer [22], and SegMatch [23].

RTAB-Map also includes lidar as input source [21]. The pose estimation is updated when ICP
(iterative-closest-point) [57] is successfully done using Point to Point (P2P) or Point to Plane
(P2N) correspondence. The pose estimation requires valid motion prediction from a previous
registration or from external odometry transformation. The pose and map optimization are done
the same way as visual SLAM. The evaluation was done with the same datasets as mentioned
above in RTAB-Map visual SLAM approach in comparison to Google Cartographer [22], Karto
SLAM [58], Hector SLAM [36] and GMapping [35]. For short-range lidar, RTAB-Map is the
best for both sequences during evaluation. For long-range lidar, RTAB-Map performs equally
well to Hector SLAM.

Google Cartographer involves two processes, called local SLAM and global SLAM [59]. During
local SLAM, new scans are matched against the current submap with a Ceres-based scan
matcher. The submap is expressed as a probability grid where each discrete grid point shows the
obstacle occupancy. In global SLAM, generated submaps and scans are included for loop closing
and errors accumulated in submaps are removed. The algorithm was evaluated based on Radish
[60] dataset benchmarking and tested in the real-world [61]. Compared with Graph Mapping,
Google Cartographer performs better on 5 out of 7 datasets. And in real-world experiments, the

error results are roughly in the expected order of magnitude compared to ground truth.

In [23], a real-time laser-based 3D SLAM method, SegMatch, was introduced. The point clouds
obtained from 3D LiDAR are first segmented into unique point clusters for matching using the
“Cluster-All Method” [62]. Next, feature extraction is performed based on eigenvalue and
ensemble of shape histograms. A random forest for classification and timing performances was

deployed, the correspondences are then matched. RANSAC (random sample consensus) [63]

algorithm is applied to verify the potential matches. The proposed algorithm was tested using the

KITTI dataset [64] and can successfully localize its vehicle within 35 meters 95% of the time.
3.1.3 Limitations and Selection

A summary of limitations for all SLAM methods mentioned above is presented in Table 1. For
visual-based SLAM, the localization and mapping are performed by matching features extracted
from images [19]. While requiring unobstructed cameras and adequate features for matching, the
images' quality suffers from illumination and visibility changes in real life. However, cameras
are cheaper, have lower power consumption and they can provide more detailed environmental

information than other sensors, such as lidar and Radar [65].

For LiDAR-based SLAM, the localization and mapping are achieved by matching point cloud
data [23]. The information extraction is limited to geometry information, ignoring semantic
information. LIDAR can provide high-precision distance measurements but is not able to provide
as finely detailed point clouds as images in terms of density. The performance of LiDAR-based
SLAM is not affected by illumination changes compared with visual-based SLAM. In places
with few obstacles, the algorithm suffers from aligning the point clouds, resulting in losing track
of the pose prediction [15].

All methods mentioned in previous sections have packages implemented in ROS (Robot
Operating System) except for SegMatch [23]. Considering all aspects, RTAB-Map is selected for
simulation because it supports both visual-based and LIDAR-based SLAM, allowing changing
sensors based on specific needs. Bothe methods in RTAB-Map are capable of generating 2D

occupancy grids, which is suitable for most path planners [66].

Method Name Summary Description Limitation

e Feature-based SLAM method

e Utilizes monocular, stereo, and RGB-D . . .
Trajectory estimation

ORB-SLAM2 cameras
[18] o ORB features are fast to track and match not as accurate as
i : . . ' RTAB-Map [67]
allowing real-time operation with good
precision

e Real-time keyframe-based SLAM method

S-PTAM [20] W'ith stereo camera N . . Support only stereo
e Binary features describing visual point- camera
landmarks
e Support both visual-based and lidar-based
SLAM Images' quality suffers
RTAB-Map [21] e Features detected by F2M (Frame-To-Map) from illumination and
and F2F (Frame-To-Frame) approach visibility changes
e Provide visual odometry
e Local SLAM and global SLAM
Google e Local SLAM generates submaps expressed Information extraction
Cartographer in probability grids with new scans is limited to geometry
[22] e Global SLAM includes submaps and scans information

for loop closure and error removal
e “Cluster-All Method” segments point

SegMatch [23] clouds into unique point clusters No integration with
° e RANSAC is used for verifying the potential ROS
matches

Table 1: A summary of all SLAM methods and their limitations

3.2 Path Planning Algorithms

Path planning is a crucial task in autonomous robotics. It involves defining a path from the initial
position to the goal position avoiding obstacles in the environment [68]. In this section, papers
pertaining to path planning are reviewed. These papers are categorized as global path planners
[69] and local path planners [70].

3.2.1 Global Path Planner

Global path planners reviewed in this section are categorized as grid-based approaches [25],
evolutionary approach [71], and probability-based approaches [66].

3.2.1.1 Grid-Based Algorithm

Grid-based path planning utilizes 2D occupancy grid. The optimal path is calculated based on the
property of each grid cell.

A* algorithm [72] finds the shortest path from initial node ginit to goal node qgeal. It employs a
function f(q) = g(q) +h(qg), where g(q) estimates the cost of the shortest path from initial node qinit
to g, and h(q) estimates the cost of the shortest path from q to qgoar. The costs are calculated based
on either Euclidian distance or Manhattan distance. The experimental result shows that the best
result in path length corresponds to A* algorithm, but the processing time is more than 30%

higher compared to probabilistic Roadmap and genetic algorithms [68].

D* algorithm [25] is a modified dynamic version of the A* algorithm, where cost functions are
updated once new obstacles are detected. A complete map is not required to compute the cost
function. Instead of using g(q) to represent the cost from current node g to goal node qgoal, it
calculates the cost backward from the destination cell. Recomputations are required every time
obstacles are detected. It suits the dynamic and unknown environment. In the 8x8 grid test, D*
algorithm has 0.003 second longer execution time than A* algorithm.

3.2.1.2 Evolutionary Algorithm

Genetic Algorithm is a stochastic search technique that mimics the natural evolution process
inspired by Darwin [71]. Potential solutions to a problem are encoded as chromosomes, which
form a population [73]. In path planning, chromosomes are used to represent the grid cells of the
mobile robot environment. GA generates a population of possible paths iteratively, and the
population is evaluated by the predefined fitness function. The crossover strategy prevents the
solution from converging to local minima. GA was tested in 10x10 and 100x100 grid world and

it was able to find the shortest path in different environment setups within 100 generations [74].
3.2.1.3 Probabilistic-based Algorithm

Rapidly-Exploring Random Tree (RRT) [27] is a probabilistic-based algorithm, solving path
planning without nonholonomic constraints. The tree incrementally grows from the starting point
Qinitto @ random number of new nodes gnew until it hits the endgoal ggoa. And two different
functions, creation and expansion of the tree, are used. The expansion of the tree is one way from
starting point to end point whereas the expansion of the tress is bidirectional to improve the time
efficiency. RRT algorithm performs better in execution time compared to RRT*, but worse than

A* and HPA* algorithms. In addition, the path length computed by RRT is the longest among all
algorithms, including A*, HPA*, MEA*, etc [74].

Figure 1: RRT exploration process [74]
3.2.1.4 Limitation and Selection

A summary of all SLAM methods discussed, and their limitations are shown in Table 2. The
computation cost of grid-based algorithm and RRT algorithm increases considerably for large
scale and high-dimensional environment because of the usage of grid map [74]. Parameter
tunning is one disadvantage of evolutionary algorithms in addition to huge computation cost
increment. RRT requires a large number of iterations and samples to avoid local minima, which
increases the need for memory [71]. However, robots are not equipped with high-power
computers with enough computer memory, which limits the potential of using the RRT
algorithm.

Considering difficulties in parameter tuning and computation power optimization, the
evolutionary approach is not considered an appropriate approach in the USAR scenario. Since
the chosen SLAM method RTAB-Map can generate a 2D occupancy grid for both visual-based
and LiDAR-based approaches, the grid-based methods are chosen. In addition, A* algorithm
exists in ROS as one of the main global planners. Thus, the A* algorithm is chosen for future

simulation development.

3.2.2 Local Path Planner

Grid-based path planning
Cost function f(q) = g(q) +h(q)

Modified dynamic version of the
A* algorithm

Cost functions are updated once
new obstacles are detected

Generates a population of possible

paths
Population is evaluated by the
predefined fitness function

Probabilistic-based algorithm

Tree incrementally grows from the
starting point until it hits the end-

goal

3.2.2.1 Dynamic Window Approach (DWA) local planner

10

The processing time is more
than 30% higher compared to
the probabilistic Roadmap
and genetic algorithms.

Computation cost increase
greatly for large scale and
high-dimensional
environment.

Parameter tunning is hard

Requires a large number of
iterations and samples to
avoid local minima,
increasing memory usage.

Table 2: A summary of global path planning algorithms and their limitations

In this section, local path planners available in ROS are reviewed, including Dynamic Window
Approach (DWA) local planner [28], Time Elastic Band (TEB) local planner[29] and EBAND

local planner [30].

The DWA local planner deals with the local path planning problem in the 2D occupancy grid
[28]. The DWA planner discretely proposes linear velocity (dx, dy) and angular velocity (dO).

For each velocity sample, forward simulation from the current robot’s position is performed to

predict the position of the robot after the proposed velocity is applied for some short period of
time (Figure 2). The results from forwarding simulation are evaluated and unsuccessful
trajectories are forbidden. The best trajectory is chosen, and the corresponding velocity is sent to
a mobile base. The algorithm is tested in 2D corridor with static obstacles. The experiments
showed that the DWA planner is very robust and successfully handled collision avoidance tasks,

with a safe maximum driving speed up to 95 cm/s, while the computation time is within 0.25 sec.

Figure 2: Example of forward prediction of DWA local planner [75]

3.2.2.2 Time Elastic Band (TEB) local planner

TEB local planner is introduced in [75]. It accounts for the velocity and acceleration constraints
as well as surrounding obstacle distance, with a weight assigned to each. It generates a sequence
of poses for discrete time intervals. Similar to the DWA planner, the linear and angular velocity
will be fed into a mobile base controller for navigation. The results from simulations and
experiments illustrates that the approach is robust and provides a smooth path [76]. In addition,
TEB local planner takes into consideration of geometric constraints. In recent version of
teb_local_planner, it supports dynamic obstacles. However, the performance depends on the
obstacle tracking and state estimation accuracy. As shown in figure 3, the TEB local planner

collides as its preferred trajectory is elongated by the motion of human.

11

P

Figure 3: Scenario 1: Traces of robot and human’s movement [78]

3.2.2.3 EBAND local planner

EBAND local planner [30] produces a collision-free path by two artificial forces: contraction
force, and repulsion force. The contraction force helps plan a smooth path, while the repulsion
force keeps the robot away from obstacles. The global trajectory is modified such that the robot
can smoothly follow the path. Results showed that the EBAND planner was less smooth
compared to DWA and TEB planner and experiences similar test results as TEB planner in terms

of execution time. This algorithm was implemented in ROS as eband_local_panner package [77].
3.2.2.4 Limitations and Selection

DWA local planner does not consider the robot’s geometric constraints, which means the robot
will not keep a safe distance away from obstacles. This may cause collisions [78]. For EBAND
and TEB local planner, the direction of dynamic obstacles’ movement may make the path
planning worse. In scenario 2 (Figure 4) when a human ignoring the approaching robot, the
initial optimal trajectory passes between the wall and the human becomes infeasible. The
updated trajectory will be elongated to avoid the human, and eventually cause collision with the
wall [30].

H+TER

Figure 4: Scenario 2: Traces of robot and human’s movement [78]

12

Due to the requirement of multiple robots to work collaboratively in the same environment, we
need to consider the effect of one robot crossing the other’s planned path. Thus, DWA planner
was chosen regardless of the geometric constraints of the robots. In addition, DWA planner is the
default local planner implemented in Jackal.

3.3 Map Merging Algorithms

To construct a complete global map of the environment, the data collected by different robots
need to be integrated into a single map. Moreover, the integration should be done as fast as
possible to facilitate the environment exploration process [31]. If the initial position of robots is
known, map merging is a straightforward extension of the single robot mapping [32], [33]. This
IS because the transformation between local maps is known; map merging is a simple addition
operation. However, the integration of maps when robots do not know their relative position is
more complicated. With few correspondences in local maps, feature extraction will fail, and

transformation between different local maps can be erroneous.

The method proposed in [33] allows keeping multiple disconnected maps in memory. The map
merging is done by computing a transformation between two overlapping regions by scan
matching. One of the maps is then transformed such that two overlapping areas fit. A loop
closing operation is applied to refit the two maps to improve the accuracy of merging. The
algorithm was tested with RoboCup Rescue Virtual Robots Competition maps [79] and the
Cogniron dataset [80].

The approach in [31] describes an adapted particle filter in combination with a predictive model
of the environment in addition to estimation of overlaps. The most likely hypothesis is
determined at each iteration of the particle filter. The algorithm was tested with a sequence of
data collected in three environments. The experiment showed that the map-merging algorithm
generated accurate, consistent maps in all 12 runs and actively verified the relative location of

robots.

In our environment exploration experiment, the initial positions of the robots are known. Thus,
straight forward map merging algorithm is more than enough to handle this scenario. In ROS,

map_merge node was implemented in m_explore package and selected for future simulations.

13

4. Methods

This section will describe the final simulator design in detail, which is divided into four
components: Environment Simulation, Multi-Robot Simulation, Map Merging, Integration with
MADE-Net

4.1 Environment Simulation

The simulator should be flexible enough to provide customized cluttered and unstructured
environment by using various types of obstacles and placin